《突破 | 复旦大学在利用能量局域实现增强光探测上取得进展》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2024-08-28
  • 为实现更高性能的光热电探测,有效地将光能、热能局域以实现高效的光-热-电能量转换至关重要。然而,由于衬底的影响,目前微纳尺度下器件多物理场耦合作用机制的研究具有较大的挑战性。在片上集成器件向三维空间发展的趋势下,三维微纳器件的构效关系也需要详细探索。因此,利用纳米薄膜剥离组装技术将功能材料薄膜与衬底分离,构建独立的三维微纳结构,实现光、热能量局域,将为上述研究提供极大助力,为相应器件的实用化奠定重要基础。

    近日,材料科学系黄高山/梅永丰课题组利用自卷曲技术,将作为光热电活性材料的碲纳米薄膜从衬底分离并组装成三维管状自驱动光探测器,揭示了器件中的光、热能量局域以及三维尺度下的光-热-电转换机制,实现了宽带光探测及灵敏度提升,为多维度光电探测提供了有效的解决方案。

    团队提出选用光热电活性材料,应用自卷曲纳米技术,利用纳米薄膜纵向内应变梯度,将从衬底释放的纳米薄膜组装成三维卷曲结构(图1a)。由于谐振效应,光场能量被局域在悬空的三维管壁中(图1b),产生更大的温度差,因此在热-电转换中产生了显著的电势差。实验结果进一步验证了管状探测器对光探测性能提升的显著效果,自驱动光生电压实现了307倍的提升。

    团队进一步验证了自卷曲探测器中的光热电效应及其位置依赖关系。图2a-b展示了自卷曲光热电器件中入射光位置与光生电流强度与方向的映射关系,验证了三维器件中光-热-电耦合与转换。本工作中所得到的自卷曲光热电探测器也被证实能够实现从可见光到长波红外超宽波段范围的自驱动光探测(图2c-d)。利用探测器卷曲圈数的调控,可以进一步优化自驱动光探测器的性能。

    得益于管状探测器特殊的三维几何构型,自卷曲光热电探测器展现了优异的多维度信息探测能力。如图3a所示,自卷曲探测器展现了极佳的广角探测能力。此外,由于三维管状结构柱对称特性,探测器对电场方向平行于管轴方向的偏振光有更好的响应。自卷曲光热电探测器通过单像素传感实现了还原度极佳、分辨率极高的偏振成像,如图3b所示。该结果验证了自卷曲光热电探测器具备强度、偏振方向多维度探测能力。

    团队利用与现有成熟半导体技术兼容的三维自卷曲纳米技术结合热电功能材料,设计制备了新型自卷曲三维光热电探测器。三维管状结构有效地提高了光吸收和热局域作用,并利用光、热能量局域增强了光-热-电转化。本工作详细分析了三维尺度下的光-热-电多物理场耦合作用,并利用几何结构变化调控了探测器性能。该自卷曲光热电探测器具备高灵敏度、宽光谱响应范围等优异性能,还具备自驱动、全向探测、偏振成像等特色,在片上集成光电系统中具有广阔的应用前景。

    图1.自卷曲光热电探测器的结构及能量局域:a. 自卷曲光热电器件的结构和工作原理;b. 光激发下器件中的电场分布模拟结果;c. 相同激光脉冲照射下管状探测器和平面探测器的光生电压-时间关系曲线

    图2.自卷曲探测器的光热电效应验证:a-b. 研究所用空间坐标系,以及光生电流的位置依赖关系的示意图和实验结果;c-d. 多波长激发下入射光功率与自驱动光生电压,电压响应度关系曲线

    图3.自卷曲光热电探测器的全向探测与偏振成像:a. 卷曲探测器的广角探测能力示意图及角度分辨的光生电压测试结果;b. 在偏振入射角为0°和90°情况下自卷曲器件的成像结果

相关报告
  • 《突破 | 上海技物所在反铁磁半金属弱局域态非平衡太赫兹探测机理研究方面取得突破》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2025-05-08
    • 近日,红外科学与技术全国重点实验室胡伟达、陈效双、陆卫研究团队在反铁磁半金属弱局域增强的太赫兹探测取得突破,采用密度泛函理论和ARPES技术揭示了NbFeTe2中反相磁矩与电子自旋相互作用的物理过程以及反铁磁诱导Anderson局域化的微观机理,观察到载流子跳变诱导器件太赫兹响应率随温度降低的非线性增强现象,为针对不同应用场景下的宽温区高性能太赫兹探测器设计提供了新的视角。研究成果以“Antiferromagnetic semimetal terahertz photodetectors enhanced through weak localization”为题,发表在《自然·通讯》(Nature Communications)杂志上。 研究团队利用NbFeTe2中的载流子在由反铁磁磁矩与电子自旋之间相互作用产生的局域态之间的跳变行为,设计了一系列针对不同应用场景的太赫兹探测器。实验结果表明在载流子跳变温区内(77~200 K),器件响应率随温度降低呈现非线性增加趋势。当非对称天线为材料提供足够的塞贝克电势后,载流子可以越过局域态势垒重新排序,实现室温太赫兹性能的突破。此外,NbFeTe2/石墨烯异质结的自驱动性能通过内建电场得以优化,达到了220 V W?1的峰值灵敏度和小于20 pW Hz-1/2的噪声等效功率。这些结果揭示了反铁磁半金属在大面积、高速成像应用中的潜力。 局域化物理模型以及器件在不同载流子输运模式下的太赫兹响应
  • 《南科大研究团队在量子时间关联探测领域取得进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2025-03-26
    • 近日,南方科技大学物理系副教授鲁大为团队与清华大学博士研究生刘振寰、法国国家科学研究中心-新加坡企业与技术园区研究员刘祥境合作在量子时间关联探测领域取得进展,利用核磁共振系综测量特性高效探测量子系统的时间关联。 量子关联是量子力学的一项显著特征,使量子系统与经典宏观世界呈现出本质区别。量子关联可分为空间量子关联和时间量子关联。其中,广为人知的量子纠缠属于空间量子关联。相关研究人员对量子纠缠的深入研究不仅加深了人类对量子世界的理解,还为量子通信、量子计算、量子传感等前沿技术的发展提供了关键工具和资源。近年来,这些研究已扩展至时间维度,即不同时间节点间的量子关联特性,并探索其在量子技术中的潜在应用。 时间关联性这一概念早在量子力学建立初期就引起了量子力学先驱者的关注。著名学者 Leggett 和 Garg 于1985年提出了著名的 Leggett-Garg 不等式后,其在量子信息科学领域的深入研究和广泛应用得以系统性地展开。 Leggett-Garg 不等式用于检验一个物理系统是否满足“宏观现实论(Macroscopic Realism)”。宏观现实论由两个基本假设组成: (1)宏观现实性(Macroscopic Realism):一个宏观物体具有两个或多个宏观上不同的状态,在任意给定时刻,它都处于其中的某个确定状态; (2)无侵扰测量(Noninvasive Measurement):原则上可以测量系统的状态,而不会对其当前状态或后续动力学演化产生任何影响。 在经典物理中,系统应当满足该不等式。然而,在量子力学中,由于测量的投影效应(波函数塌缩)和量子相干性,某些演化过程可以违反 Leggett-Garg 不等式。这表明,量子系统无法用经典的宏观现实论进行描述。 量子时间关联的研究不仅揭示了物理世界的本质,相关研究人员也已提出相关理论方案使其可应用于量子技术中。例如,量子时间关联可用于量子密钥分发,环境维度估计、量子信道容量估计、量子计时系统的稳定性分析及量子因果推断等等前沿领域。然而,在当前实验体系中,针对量子时间关联的高效探测方法与技术工具仍存在显著不足。 图1(a) 通过依次测量量子通道前后的量子系统来构建PDO示意图;(b) 单一时间切片“虚拟”制备PDO的量子线路图,之后通过随机测量估计其二阶矩 针对这一问题,鲁大为团队及其合作者成功设计并实验验证了一种高效探测量子时间关联的新方法。该方法基于赝密度算符(Pseudo Density Operator, PDO)理论框架——该算符将密度矩阵推广至时间维度。相较于经典的密度矩阵,PDO的显著特征在于允许存在负本征值,这些负值反映了量子系统的时间关联。因此,通过观测负本征值即可确认时间关联的存在。传统PDO时间关联探测需依赖层析表征技术,但该方案不仅需要消耗大量量子资源,还显著提升了实验操作复杂度。为突破这一局限,研究团队创新性地将准概率分解理论与随机测量技术相结合,构建出可在单一时间节点“虚拟”制备双时间点PDO的量子线路,并通过随机测量获取其二阶统计矩,最终实现PDO负本征值的高效估计。 图2 系综NMR系统:样品中的大量全同分子都参与了实验过程,最后对所有分子进行平均统计测量 该时间关联探测方法有如下优点:(1)虽然实验基于对赝密度矩阵算符二阶矩的测量,但只需对单份量子系统进行操作,减小了量子设备的规模;(2) 所需的不同测量基数量与系统规模无关,这一特性适用于采用系综测量(ensemble-average measurement)的方法,如核磁共振(NMR)、冷原子系统以及金刚石中的氮-空位中心等体系。在这些实验平台中,仅使用单一测量基即可执行指数级投影测量,能更高效地完成实验。团队利用核磁共振(NMR)平台进行的实验不仅验证了理论预期,更展示了该方法在热力学量子系统中的可行性与高精度表现。 图3 (a)随机测量前实验验证“虚拟”制备PDO的可行性及准确性;(b-c) PDO的本征值分析;(d-e) 通过随机测量估计PDO的二阶矩 此外,研究表明,该成果有望启发更高效的量子时间关联探测方法,并在广受关注的量子技术各个领域发挥重要作用。实验中,NMR 系统在测量密度矩阵对角元方面展现出的卓越能力,也为进一步探索其他量子试验技术提供了宝贵的启示。