《清华大学在生物可降解电池方面取得新进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-07-27
  • 清华大学材料学院尹斓课题组在《SMALL》期刊发表题为“一种用于植入式瞬态电子器件的可降解电池(A fully biodegradable battery for self-powered transient implant”的研究论文。这项工作不仅在可降解电池领域提出了新的材料选择和制备方案,实现了高性能、完全生物可降解的电池,同时通过电池测试、电化学分析、体内外降解实验、功能电路模拟等实验设计,全面清晰地研究了此生物可降解电池在电学和生物医学方面的性质和应用潜力。

      生物可降解器件主要指在生理或环境水溶液中具有可控降解能力的一类电子器件,是一种近年来备受关注的新兴技术产品,也可看做是“瞬态电子学”在生物环境领域的一个分支。器件的应用场景包括作为临时植入物执行传感和刺激功能,辅助伤口愈合、组织再生等重要的生物过程等;亦可作为具有生物降解性的电子系统,可以减少常规植入式器件潜在的风险和可能引起的慢性炎症,降低相关医疗成本。其他潜在应用还包括在环保、信息安全等领域的应用。

      相较于无线传输及外接电源,具有独立供电能力和高能量密度的生物可降解电池是更适用于植入式器件的供能方案。通过稳定的电能供给,器件可以在生物体内实现自供电的诊断和治疗,使体内感应和刺激内持续更长时间以满足临床标准,并可在随后完全被吸收或生物降解。综上,可降解电池在体内应用具有非常特殊的意义,但迄今为止进展十分有限。

      

     

      尹斓研究团队提出了一种全由可降解材料制备的电池,能够提供高稳定的输出电压以及理想的容量。该电池能够驱动典型的超低功耗电子设备。具有良好的生物相容性,在体内和体外均可完全降解。电池可以作为植入式电源,配合其它设备实现组织再生、手术前或手术后长时间监测。电极材料的选择和电池的制备为植入式设备的能量供应提供了一个合适的选择,并为完整的瞬态电子系统设计提供了重要方案。

      

      尹斓研究团队长期从事可降解材料及电子的研究。除此之外,近期还报道过使用薄膜单晶硅材料作为可降解电子的防水封装材料,以极大延长可降解器件在体内的工作寿命,并基于此制备了可降解的皮层脑电图传感器,为解决可降解电子的封装难题提供了重要思路(ACS Nano, 2017, 11, 12562–12572, DOI: 10.1021/acsnano.7b06697)。

      本文的通讯作者为清华大学材料学院助理教授尹斓,第一作者为清华大学2017级博士生黄雪莹,其他重要合作者包括清华大学材料学院赵凌云、伍晖副教授,清华大学电子工程系盛兴、张沕琳助理教授,中国科学技术大学高分子系徐航勋教授。本工作受到国家自然科学基金委以及国家“青年相关人才计划”项目的资助。《SMALL》德国Wiley出版社旗下期刊,该期刊目前影响因子为9.598,本文工作同时被选为当月期刊封面内页(Inside Front Cover)。

相关报告
  • 《清华大学在熔融锂金属电池研究方面取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-07-20
    • 清华大学材料学院伍晖副教授课题组与斯坦福大学合作,在《自然能源》(Nature Energy)上发表了题为《一种用于电网储能的中温石榴石固态电解质基熔融锂电池》(An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage)的研究论文。该论文提出了一种面向大规模储能应用的全电池系统,设计并验证了以熔融锂金属为负极,锡铅合金和铋铅合金为正极,Li6.4La3Zr1.4Ta0.6O12(LLZTO)陶瓷管为电解质的液态金属电极(LME)电池。通过将固态电解质引入LME电池,有效降低了LME电池的运行温度,显著提高了电池的库伦效率和循环寿命。   随着风能、太阳能等间歇性可再生能源的大规模应用与智能电网的发展,大规模储能系统的研究得到了越来越多的关注。可充电电池具有能量效率高,成本可控,不受地形空间限制等优点,应用于储能领域具有较大的潜力。储能电池需要满足高功率、高安全性、长寿命和低成本等要求,新一代储能电池的开发,一直是电池研究领域的热点。LME电池是大规模储能电池的候选方案,在这一类电池体系中,如何降低电池的工作温度、减少电池的成本、提高电池的可靠性和安全性,是LME电池发展的主要挑战。   为解决上述问题,伍晖副教授课题组与美国斯坦福大学崔屹教授课题组合作,将固态电解质引入LME电池(如图),取代传统的熔融盐电解质(通常需要300℃以上的运行温度),将LME电池的运行温度降低至240℃。LLZTO固态电解质在240℃工作时具有远高于室温条件下的离子电导率,可以实现在大电流密度下的充放电,且可以有效抑制电池自放电和副反应,提升电池的库伦效率。这种新型电池系统未来有望在大规模储能系统中得以应用。   基于固态电解质的熔融锂电池的示意图   近年来,伍晖副教授研究团队专注于功能材料的制备及其在能源存储、柔性电子和环境等领域的研究与开发,在相关领域取得了多项重要成果。相关工作发表在《自然能源》(Nature Energy)、《自然通讯》(Nature Communications)、《科学进展》(Science Advances)等期刊上。   清华大学材料学院伍晖副教授和美国斯坦福大学崔屹教授为本文的通讯作者。清华大学材料学院访问学生金阳和材料学院2013级博士生刘凯为本文的共同第一作者。本研究得到了科技部青年973计划、国家自然科学基金委项目的资助。   论文链接:https://www.nature.com/articles/s41560-018-0198-9
  • 《前沿 | 科学岛团队在3D生物打印组织工程研究方面取得新进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2024-08-28
    • 近日,中国科学院合肥物质院强磁场中心王俊峰研究员团队在开发新型3D生物打印复合材料用于组织工程修复领域取得了系列研究进展,相关研究发表在国际期刊Materials&Design和International Journal of Biological Macromolecules。 3D生物打印技术,作为前沿的生物制造技术,通过使用活细胞、支架材料、生长因子等生物活性物质来构建复杂的生物组织,模仿天然组织的功能和形态。这项技术在生物组织修复中具有众多优势。首先,它能根据患者需求制造个性化组织或器官,适用于复杂损伤的修复;其次,它可使用患者自身细胞打印与其基因匹配的组织,减少免疫排斥;此外它还能再生复杂组织,如血管化组织和神经组织。 目前常用的3D生物打印材料包括用于硬组织修复的聚己内酯(PCL)和聚乳酸-羟基乙酸共聚物(PLGA),以及用于软组织修复的水凝胶(如明胶、海藻酸盐、透明质酸)。尽管3D生物打印技术潜力巨大,但材料选择与优化始终是制约3D生物打印技术发展的关键因素,特别是材料的生物相容性、机械性能、可降解性和打印精细度等特性。 生物硼基玻璃(BBG)是一种生物活性材料,在骨组织修复和再生医学中已有广泛应用。生物玻璃能够与人体组织和细胞良好相容,能够被机体识别并促进组织的整合。生物玻璃在接触体液时能够形成一层羟基磷灰石(HA)表面,这种层能够促进骨细胞的黏附和生长,促进骨组织的再生。生物玻璃的降解速度可以通过调控其化学成分来调整,以满足不同组织的修复需求。合适的降解速度可以确保材料在组织再生过程中逐渐被体内组织取代,而不会产生过快或过慢的降解。生物玻璃可以与其他材料(如聚合物、水凝胶)复合使用,形成具有高机械强度和良好加工性能的材料,在3D生物打印材料中的应用展现出巨大潜力。 在骨组织修复中,研究团队利用BBG的独特理化特性,结合生物支架体BCC单元设计了含有不同BBG含量(0%、5%、10%、20%和40%)的定制BBG/PCL复合材料,并通过选择性激光烧结(SLS)技术3D打印出高质量的骨缺损修复支架。系统评估了这些BBG/PCL复合支架的孔隙几何形状、孔隙率、机械强度、亲水性、蛋白质吸附、降解行为、体外细胞相容性、成骨分化行为及体内生物学性能,以用于大段骨缺损(CSBD)修复。实验结果表明,BBG的加入显著改善了支架的综合性能,包括适宜的孔隙率、机械强度、亲水性、体外降解速率、细胞相容性、成骨分化能力及体内成骨和血管生成的生物学性能。研究发现,20% BBG含量为材料性能的最佳配比,20BBG/PCL复合支架表现出68.5%的孔隙率、650微米的孔径和0.860 MPa的压缩强度。 在软组织修复中,团队基于对BBG的特殊内外生物矿化特性的深入研究,将BBG颗粒引入海藻酸钠(SA)中,构建了高精度3D打印的BBG-SA生物墨水。研究表明,BBG与SA结合后,能够有效诱导降解并释放Ca²+,启动SA的内部凝胶化过程。同时,BBG作为填料解决了传统使用氯化钙进行外部交联时造成的凝胶化不均匀和显著收缩问题。通过挤出式3D打印技术,团队设计了含有不同BBG含量(0%、0.3%、0.5%、0.7%)的3D打印水凝胶复合支架,并系统评估了BBG-SA水凝胶的流变特性、打印精度和成型收缩情况。结果表明,添加BBG显著改善了海藻酸钠在3D打印中的低打印精度和成型收缩问题,其中0.5% BBG-SA配方表现出最佳的可打印性、打印精度和成型收缩,展示了在组织工程3D生物打印中的应用潜力。这些新型生物墨水还展现出优异的生物相容性,增强了MC3T3-E1细胞在支架表面的黏附和增殖,并促进了软组织相关基因和蛋白质的表达。 图1. 个性化BBG/PCL复合多孔支架SLS制备过程 图2. 20BBG/PCL支架指引兔子桡骨大段骨缺损再生效果良好 图3. 0.5% BBG-SA生物墨水表现出最佳的可打印性、打印精度和成型收缩为组织工程中的3D生物打印提供了一个有前景的平台