《传统废塑料PET制备可降解塑料PHA方面取得新进展》

  • 来源专题:绿色化工
  • 编译者: 武春亮
  • 发布时间:2025-05-29
  • 传统塑料污染已严重威胁生态环境和人类健康,生物降解塑料—聚羟基脂肪酸酯(PHA)作为传统塑料的替代品已受到广泛关注。然而,高昂的生产成本限制了其大规模应用。利用废弃塑料作为微生物合成PHA的碳源,不仅可有效回收利用废塑料,还可以降低PHA的生产成本。因此,开发由传统废塑料到生物可降解塑料的转化技术,对缓解塑料污染、实现循环经济和可持续发展具有重要意义。聚对苯二甲酸乙二醇酯(PET)水解产生的对苯二甲酸(TPA)在作为微生物合成PHA的碳源方面具有较大潜力。但是,分离、驯化可高效转化TPA为PHA的微生物菌株仍存在一定挑战。

    中国科学院城市环境研究所汪印研究团队采用摇瓶实验从污泥中富集混合微生物群落,以PET水解产物—对苯二甲酸(TPA)作为碳源,在5升生物反应器中开展分批补料发酵,成功实现TPA向PHA的转化。发酵过程的最大PHA浓度为2.25 g/L,转化率为0.10 gPHA/gTPA。研究通过基因注释和中间代谢物鉴定,揭示了优势菌群组成及TPA转化途径。结果表明,该菌群具有显著的协同作用,不同菌种通过分泌特定酶将TPA逐步转化为原儿茶酸或儿茶酚,最终生成PHA生物合成前体—乙酰辅酶A。本研究为废弃PET塑料升级再造为生物降解可聚合物建立了可持续方法,所阐明的代谢机制为未来提升PHA产量提供了重要理论依据。

    相关研究成果以metabolic mechanism in biosynthesis of polyhydroxyalkanoate from terephthalic acid by mixed microbial consortium为题发表在环境领域知名期刊Chemical Engineering Journal上。特别研究助理潘兰佳博士与Wardah Hayat Khan硕士生为论文第一作者,特别研究助理李杰博士和汪印研究员为共同通讯作者。该研究得到中国科学院特别研究助理项目、厦门市留学人员科研项目、福建省科技重大专项等项目资助。

  • 原文来源:https://www.chemall.com.cn/news/show-215786.html
相关报告
  • 《我国学者在生物质和废塑料定向高值利用领域取得新进展》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2023-10-16
    •  在国家自然科学基金项目(批准号:51822604)等资助下,东南大学张会岩教授团队在生物质和废塑料定向高值利用领域取得新进展。相关研究成果分别以“光电化学电池中利用太阳能、生物质和二氧化碳制备可再生甲酸 (Renewable formate from sunlight, biomass and carbon dioxide in a photoelectrochemical cell)”和“基于多层不锈钢催化剂的废塑料热解-催化升级利用(Pyrolysis-catalysis upcycling of waste plastic using a multilayer stainless-steel catalyst towards a circular economy)”为题发表在《自然?通讯》(Nature Communications)和《美国科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America)上,论文链接分别为:https://www.nature.com/articles/s41467-023-36726-3;https://www.pnas.org/doi/10.1073/pnas.2305078120。   生物质和废塑料的高值化利用对解决当前全球面临的能源危机和环境污染等问题具有重要意义。但与化石原料相比,生物质和废塑料具有来源广泛、成分复杂、高值利用困难等特点,如何高选择性地定向高值利用是一项巨大的挑战。在众多生物质和废塑料回收利用技术中,低温光电转化和催化热解因其工艺简单、转化条件温和、产品收率高等优势备受瞩目。   针对生物质热转化过程中易结焦、产品选择性低等问题,研究团队开发设计了一种高选择性断裂生物质C-C连接键的光电催化系统,以葡萄糖为模化物,在光阳极上C-C键断裂生成甲酸的选择性接近100%。以杨木屑、稻草或竹子等原生生物质为反应原料,甲酸选择性超过90%。光阳极反应是连续断键过程,通过不断生成分子量更小的醛糖,最终变成甲酸,光阴极氢气产率大幅提升。另外,将光阳极生物质氧化和光阴极CO2还原过程耦合匹配,可以在太阳光驱动下实现无偏压的阴阳极共催化产甲酸,系统综合法拉第效率超过160%,突破了传统不含生物质光电催化系统的极限。   针对现有塑料催化热解过程中粉末催化剂存在沉积速率低、碳氢转化率低、产品选择性低、难以循环利用等瓶颈问题,团队开发了一种可重复使用的改性多层不锈钢金属基底催化剂,能够高产率、高速率地将废塑料催化热解为高性能多壁碳纳米管和氢气,同时实现催化剂的多次循环利用。论文在传统小分子沉积的基础上,率先提出并发展了大分子直接沉积的概念(Macromolecule Chemical Vapor Deposition,MCVD),大幅提高了沉积速率和效率。该催化剂用于催化聚苯乙烯类废塑料获得86%和70%的碳原子和氢原子回收率(碳管质量产率达78.2%,尾气中氢气浓度达93%),远超目前粉末催化剂,该方法亦适用于聚乙烯、聚丙烯等多种类型的废塑料或混合塑料。此外,利用超声波可实现碳纳米管和催化剂的有效分离,在10次循环后,催化剂对废塑料碳原子回收率仅下降5%。制备的多壁碳纳米管在锂离子电池和吸波剂方面应用潜力巨大。   上述成果为生物质和废塑料的高值化利用提供了新途径,对其规模化利用具有重要的借鉴意义。
  • 《利用蓝细菌生产可降解塑料》

    • 来源专题:生物科技领域知识集成服务
    • 编译者:陈方
    • 发布时间:2021-03-08
    • 利用蓝细菌生产可降解塑料 德国蒂宾根大学的研究人员在最近的Microbial Cell Factories和PNAS上发表的几项研究中,介绍了他们成功地改变了蓝细菌的代谢通路,生产出了具有良好生物降解特性的有前途的生物塑料替代品——PHB。该方法有望在工业上大量使用,与对环境有害的石油基塑料竞争。 蓝细菌,又称微藻或蓝藻,是地球上最不起眼但功能最强大的细菌之一。研究者发现有一种蓝细菌(Synechocystis sp. PCC 6803)可以产生多羟基丁酸酯(poly-hydroxy-butyrate,PHB),一种天然形式的塑料。PHB的使用方式与塑料聚丙烯类似,但PHB在环境中可以快速降解,其降解产物无污染,是有前景的环境友好材料。 通常情况下,蓝细菌产生PHB的数量很小。研究小组成功地明确了细菌的生产PHB的关键路径和限制因素,通过去除相应的阻遏蛋白(调节蛋白PIRC),并进一步优化遗传回路(过表达基因PHAA和PHAB),使得细菌产生的PHB产量极大增加,可以占细胞总质量的80%以上,最终产生的聚合物由高度规整的纯PHB组成。研究者将继续优化细菌的碳利用效率使其生产规模进一步增加,该研究有望彻底改变塑料生产方式。 吴晓燕 编译自https://phys.org/news/2021-02-cyanobacteria-revolutionize-plastic-industry.html 原文链接:https://www.pnas.org/content/118/6/e2019988118 https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-020-01491-1           原文标题:The novel PII-interactor PirC identifies phosphoglycerate mutase as key control point of carbon storage metabolism in cyanobacteria;                      Maximizing PHB content in Synechocystis sp. PCC 6803: a new metabolic engineering strategy based on the regulator PirC