《中国科学院宁波材料所制备出高性能Co-OMS-2分子筛》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 姜山
  • 发布时间:2017-05-23
  • 中国科学院宁波材料所张建团队利用一步水热合成方法,将钴等过渡金属元素引入K-OMS-2的骨架中,制备出了Co-OMS-2分子筛。相关成果日前以封面文章形式发表于《催化化学》。

    CO催化氧化反应涉及烟草降害、汽车尾气净化、防毒面具等诸多领域,对相关催化剂的开发一直是研究热点。非贵金属催化剂凭借低廉的价格和较好的催化活性受到了广泛的关注。但如何在水汽存在的真实环境中保持高的催化性能仍是一个关键的技术难点。

      新研究表明,掺杂Co的K-OMS-2具有纳米纤维状的形貌,且比表面积由70.6平方米/克增加至188.3平方米/克。钴离子取代了骨架锰离子,增强了活性氧物种的移动性,提高了OMS-2的还原性能。另外,钴的掺杂使OMS-2催化剂表面的疏水性增强。

      对该催化剂进行CO氧化性能评价,无水条件下,30℃时CO转化率便达到100%,60℃的反应速率是未掺杂的OMS-2催化剂反应速率的28.8倍。当反应气中引入3%水汽后,Co-OMS-2催化剂在100℃以上的评价温度转化率均维持在100%。通过与Au/CeO2,Pt/CeO2和 Au1Cu1/CeO2等贵金属催化剂对比T50(转化率为50%的反应温度)和该温度下的反应速率等参数,Co-OMS-2催化剂的抗水性能不亚于贵金属催化剂。

    来源:中国材料网http://www.matinfo.com.cn/mat2005/shangcheng/dongtai_nr.asp?id=81272

相关报告
  • 《中国科学院宁波材料技所全小分子有机太阳能电池研究取得进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-03-17
    • 有机太阳能电池作为新一代太阳能电池技术近年来受到广泛关注。相比较于传统的硅基太阳能电池,有机太阳能电池具有成本低、柔性、可大面积印刷制备等优点。目前制备高效有机太阳能电池的主流策略是使用聚合物给体和非富勒烯受体材料构建活性层。但聚合物材料在制备过程中通常存在分子量和分散度难以精确控制、难提纯、材料的批次稳定性差等问题,相应制备的有机太阳能电池效率的重复性降低,不利于大规模商业化应用。而有机小分子的分子量确定,可以精确合成,易于提纯,批次稳定性好,有利于大规模制备。因此,全小分子有机太阳能电池具有较高的商业化应用潜力。但由于全小分子电池给体和受体都为小分子结构,使得其难以形成像聚合物薄膜那样较为理想的双连续互穿网络形貌。过强的给体结晶会使给体与受体严重共混,而太弱则不利于给体分子间紧密的π-π堆积,从而降低电荷传输。所以全小分子电池中难以调控的相形貌,致使其光电转化效率一直处于较低水平。   近期,中国科学院科学家团队——宁波材料技术与工程研究所葛子义团队报道了一种具有13.34%光电转化效率的非富勒烯全小分子有机太阳能电池,这是目前已报道的全小分子有机太阳能电池的最高效率之一。研究发现使用双氟原子修饰基于苯并二噻吩(BDT)单元的小分子给体的侧基,能有效提升器件电压,降低分子结晶性,改善相分离形貌;同时氟原子的引入能促使分子间更紧密的π-π堆积,从而使器件的效率获得显著提升。该研究进一步系统分析了不同取代位置和个数的氟化对于器件性能和分子堆积的影响,发现单氟取代对小分子的π-π堆积影响较小,并且其主要通过降低分子的HOMO能级来提升器件性能。而BDT连接的上下噻吩侧基的双氟化,则有利于形成F-H的非价键力作用,分子扭转角最小,最利于材料的共轭平面堆积,进而得到最高的光电转化效率。相关成果以13.34% Efficiency Non-fullerene All-Small-Molecule Organic Solar Cells Enabled by Modulating the Crystallinity of Donors via a Fluorination Strategy 为题发表在《德国应用化学》杂志上(Angewandte Chemie International Edition,DOI:10.1002/anie.201910297)。   该研究得到国家相关人才计划(21925506)、国家重点研发计划(2017YFE0106000)、壳牌合作项目(No. PT78950)和浙江省自然科学基金(LR16B040002)等的支持。
  • 《宁波材料所“变废为宝” 制备出轻质高效电磁屏蔽材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-12-04
    • 随着现代电子工业的快速发展,各种高集成和高功率无线通信系统和电子器件数量急剧增加,导致电磁干扰和电磁污染问题日益突出,不仅在通信领域中对信号的产生、传播和接收造成了极大的影响,而且给人类社会的生产与生活,尤其是人类身体健康带来了不容忽视的危害。联合国人类环境会议早在1969年就将电磁辐射列为继水、大气、噪声污染之后的第四大公害。电磁屏蔽材料是一类能够通过吸收和反射等方式来衰减电磁波能量传播以有效抑制电磁干扰和污染的功能材料。中国科学院宁波材料技术与工程研究所高分子事业部郑文革研究员和沈斌副研究员一直致力于高效电磁屏蔽材料的开发,前期已经在电磁屏蔽材料的制备以及性能研究方面取得一系列进展。近期,该团队又从“变废为宝”和可持续发展的角度出发,利用生物质废弃物或生活废弃物来设计和制备了轻质高效电磁屏蔽材料。 每年夏收和秋冬之际,总有大量的小麦、玉米等秸秆在田间焚烧,产生了大量浓重的烟雾,不仅成为农村环境保护的瓶颈问题,甚至成为殃及城市环境的罪魁祸首。我国作为农业大国,每年可生成数亿吨秸秆,成为“用处不大”但必须处理掉的“废弃物”。农作物秸秆属于农业生态系统中一种十分宝贵的生物质能资源。农作物秸秆资源的综合利用对于促进农民增收、环境保护、资源节约以及农业经济可持续发展意义重大。在本研究中,科研人员选用小麦秸秆作为碳源,通过直接碳化和有序组装的方式设计和制备了新颖的中空多孔碳管阵列(SCAs)用于高效电磁屏蔽(如图1)。结果表明,外直径为约1.7-3.3m、表观密度仅为约72-33mg/cm3的SCAs展现出优异的电磁屏蔽效能(约57.7-44dB),这主要依赖于材料对电磁波的强反射损耗、介电损耗以及在内部多层次泡孔结构中的多重反射损耗。进一步地,科研人员将氧化石墨烯气凝胶构筑在中空秸秆的空腔内,制备了具有石墨烯气凝胶的多孔碳管阵列(GA/SCAs)复合材料。与纯SCAs相比,GA/SCAs的密度仅略微增加到约78-39mg/cm3,而电磁屏蔽效能则增加至约66.1-70.6dB。相关结果已发表于国际期刊ACS Sustainable Chemistry & Engineering, 2019, 7, 9663-9670。 瓦楞纸板是目前最为常见的包装材料,我国快递行业发展迅猛,包装材料用量巨大,2016年我国快递行业消耗的包装箱总量约86亿个,但是我国快递包装材料的总体回收率不到20%,只有发达国家一半左右,快递包装成了不小的污染源。在日常生活中,每个人将纸板直接扔进垃圾箱是很平常的事情,如何循环利用废弃瓦楞纸板值得我们深入思考。在本研究中,鉴于瓦楞纸板具有特殊的结构(锯齿形折叠结构夹于两个平行平面之间),科研人员通过直接碳化和环氧涂层增强的方式设计和制备了高性能碳化瓦楞纸板(CCB)作为轻质结构电磁屏蔽材料(如图2),密度仅为约0.07-0.17g/cm3的CCB样品具有优异的电磁屏蔽效能(约46.0-82.0dB)和比屏蔽效能(约325-1171dB/(g/cm3)),而屏蔽性能跟CCB碳化温度或结构类型密切相关。进一步地,科研人员在CCB表面上进一步构建了超薄石墨烯皮层,以达到降低碳化温度并保持电磁屏蔽性能的效果,为节能提供了一种有效而简便的方法。相关结果已发表于国际期刊ACS Sustainable Chemistry & Engineering, 2019, 7, 18718-18725。 图1 中空多孔碳管阵列(SCAs)用于高效电磁屏蔽 图2 高性能碳化瓦楞纸板(CCB)用于高效电磁屏蔽 上述SCA或CCB电磁屏蔽材料与以前报道的其他碳泡沫材料相比表现出更加优异的屏蔽性能,说明这些结构对轻质和高性能屏蔽材料的制备具有很重要的参考意义。该工作得到了国家自然科学基金(51603218、51573202),宁波市2025重大科技专项(2018B10054)和宁波市自然科学基金(2018A610004)的大力资助。