《中国科学院宁波材料技所全小分子有机太阳能电池研究取得进展》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2020-03-17
  • 有机太阳能电池作为新一代太阳能电池技术近年来受到广泛关注。相比较于传统的硅基太阳能电池,有机太阳能电池具有成本低、柔性、可大面积印刷制备等优点。目前制备高效有机太阳能电池的主流策略是使用聚合物给体和非富勒烯受体材料构建活性层。但聚合物材料在制备过程中通常存在分子量和分散度难以精确控制、难提纯、材料的批次稳定性差等问题,相应制备的有机太阳能电池效率的重复性降低,不利于大规模商业化应用。而有机小分子的分子量确定,可以精确合成,易于提纯,批次稳定性好,有利于大规模制备。因此,全小分子有机太阳能电池具有较高的商业化应用潜力。但由于全小分子电池给体和受体都为小分子结构,使得其难以形成像聚合物薄膜那样较为理想的双连续互穿网络形貌。过强的给体结晶会使给体与受体严重共混,而太弱则不利于给体分子间紧密的π-π堆积,从而降低电荷传输。所以全小分子电池中难以调控的相形貌,致使其光电转化效率一直处于较低水平。

      近期,中国科学院科学家团队——宁波材料技术与工程研究所葛子义团队报道了一种具有13.34%光电转化效率的非富勒烯全小分子有机太阳能电池,这是目前已报道的全小分子有机太阳能电池的最高效率之一。研究发现使用双氟原子修饰基于苯并二噻吩(BDT)单元的小分子给体的侧基,能有效提升器件电压,降低分子结晶性,改善相分离形貌;同时氟原子的引入能促使分子间更紧密的π-π堆积,从而使器件的效率获得显著提升。该研究进一步系统分析了不同取代位置和个数的氟化对于器件性能和分子堆积的影响,发现单氟取代对小分子的π-π堆积影响较小,并且其主要通过降低分子的HOMO能级来提升器件性能。而BDT连接的上下噻吩侧基的双氟化,则有利于形成F-H的非价键力作用,分子扭转角最小,最利于材料的共轭平面堆积,进而得到最高的光电转化效率。相关成果以13.34% Efficiency Non-fullerene All-Small-Molecule Organic Solar Cells Enabled by Modulating the Crystallinity of Donors via a Fluorination Strategy 为题发表在《德国应用化学》杂志上(Angewandte Chemie International Edition,DOI:10.1002/anie.201910297)。

      该研究得到国家相关人才计划(21925506)、国家重点研发计划(2017YFE0106000)、壳牌合作项目(No. PT78950)和浙江省自然科学基金(LR16B040002)等的支持。

相关报告
  • 《倒置结构钙钛矿太阳能电池研究取得重要进展》

    • 来源专题:先进材料
    • 编译者:李丹
    • 发布时间:2023-07-07
    • 钙钛矿以其长的载流子扩散长度、长的载流子复合寿命和宽的吸收范围,已经成为低成本和高性能太阳能电池的潜在材料。经过十多年的发展,单结钙钛矿太阳能电池的光电转换效率已提高至25%以上,为太阳能电池产业的升级转型提供了新途径。因倒置平板结构器件具有可低温制备、可忽略的迟滞效应、高稳定性的特性,并可以制备成叠层电池,所以其备受重视。然而由于钙钛矿材料的多晶性和离子特性,钙钛矿中存在大量导致离子迁移和载流子非辐射复合的缺陷,且缺陷是水/氧渗透的主要通道,会显著降低钙钛矿薄膜甚至器件的稳定性。 前期,中国科学院宁波材料技术与工程研究所有机光电材料与器件团队在葛子义研究员的带领下通过薄膜形貌调控、载流子传输层修饰和新型二维钙钛矿材料设计(Angew. Chem.Int. Ed. 2023, 62, e2022175; Adv. Funct. Mater. 2023, 2301956; Adv. Energy Mater. 2021, 11, 2101416;Adv. Funct. Mater. 2022, 10, 2210600;Infomat 2022, e12379;Nano Energy 2022, 93, 106800;Energy Environ. Sci. 2022, 15, 3630)等手段,大幅提升了钙钛矿太阳能电池的效率和稳定性。然而,钙钛矿中的缺陷和光诱导引起的相分离将显著降低钙钛矿太阳能电池的性能和稳定性。为了解决这一问题,团队基于添加剂工程,利用可变形添加剂优化前驱体溶液胶体尺寸分布,增大钙钛矿薄膜晶粒尺寸,释放晶界残余应力,钝化铅、碘和有机阳离子缺陷,抑制光诱导引发的相分离。此外,添加剂还可优化钙钛矿能级,从而促进载流子提取/传输,减少陷阱辅助复合。通过该方法制备的钙钛矿太阳能电池的性能得到大幅度提升,基于富溴钙钛矿(FA0.88Cs0.12PbI2.64Br0.36) 和贫溴钙钛矿(FA0.96Cs0.04PbI2.8Br0.12)的器件分别获得了23.18%和24.14%的最佳效率,并且基于贫溴钙钛矿的柔性钙钛矿太阳能电池也获得了23.13%的出色效率,是迄今为止报道的柔性钙钛矿太阳能电池的最高值之一。这项工作为添加剂工程中钝化缺陷、应力消除和抑制相分离提供了新的见解,为开发最先进的太阳能电池提供了可靠方法。 相关成果以“A Deformable Additive on Defects Passivation and Phase Segregation Inhibition Enables the Efficiency of Inverted Perovskite Solar Cells over 24%”为题发表在国际知名期刊Advanced Materials上。宁波材料所博士后谢莉莎、硕士生刘健为共同第一作者,宁波材料所葛子义研究员和刘畅研究员为该论文的通讯作者。上述工作得到国家相关人才计划(21925506)、国家自然科学基金(U21A20331、81903743、22279151、22209192、62275251)和博士后面上项目(2022M713242)等项目的支持。(来源:中国科学院宁波材料技术与工程研究所) 相关论文信息:https://doi.org/10.1002/adma.202302752
  • 《宁波材料所钙钛矿/晶硅叠层太阳能电池研究获进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-07-24
    • 性接触,以实现高效钙钛矿、钙钛矿/硅叠层太阳能电池的制备。然而,由于SAMs吸附对复杂氧化物表面化学的敏感性,在金属氧化物(如氧化铟锡,Indium Tin Oxide,ITO)表面上实现均匀且无针孔的单分子层的沉积颇有挑战性。 近期,中国科学院宁波材料技术与工程研究所研究员叶继春带领硅基太阳能及宽禁带半导体团队,在前期晶体硅和钙钛矿太阳电池研究的基础上,在钙钛矿/硅叠层电池方向取得了新进展。该团队提出了ITO表面重构的新方法,实现了效率为28.4%的四端钙钛矿/硅叠层太阳电池的制备。该工作通过氢氟酸和随后的紫外臭氧处理方法选择性地去除ITO表面不需要的末端羟基和水解产物,从而实现ITO表面重构。这种方法可增加ITO表面活性和面积,从而促进高密度SAMs的吸附。此外,所得的氟化表面还可以防止ITO与钙钛矿活性层的直接接触,并钝化钙钛矿的埋底界面。得益于协同改进的钙钛矿成膜、电荷提取、能级排列和界面化学稳定性,相应的单结钙钛矿太阳电池获得了21.3%的光电转换效率和较好的长期运行稳定性。科研人员将由重构的ITO制得的半透明电池和遂穿氧钝化接触(TOPCon)电池用于四端钙钛矿/硅叠层太阳电池的制备,最终获得了28.4%的效率。 基于ITO表面重构的四端钙钛矿/硅叠层太阳电池的J-V曲线和ITO表面重构前后的微观形貌及表面化学变化图