《Cell | 细胞外基质HA-TGF-β影响线粒体稳态》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-06-28
  • 2024年6月27日,加州大学伯克利分校Andrew Dillin通讯在Cell发表题为The extracellular matrix integrates mitochondrial homeostasis的文章,揭示了ECM在整合线粒体稳态中重视的作用,揭示了ECM的变化如何影响线粒体功能,从而影响生理状态。

    这项研究首先证明,ECM的改变,特别是透明质酸(HA)的降解,可以诱导人类细胞的线粒体重塑。这种重塑的特征是线粒体分裂、氧化应激增加和线粒体呼吸速率下降。这些变化在进化上是保守的,因为作者在秀丽隐杆线虫中观察到了对ECM重塑的类似影响。研究人员继续确定TGF-β信号通路是ECM和线粒体之间沟通的关键介质。他们表明,TGF-β受体对于将信号从ECM传递到线粒体至关重要,从而导致线粒体分裂和功能变化。这一发现尤其重要,因为它表明ECM可以起到“警报成分”的作用,释放储存的配体,如TGF-β,以启动对病原体或机械应力的保护反应。

    进一步的研究表明,TMEM2,一种参与HA降解的跨膜蛋白,通过TGF-β-SMAD信号通路调节线粒体稳态。该途径在不同物种中高度保守,突出了其在协调线粒体对ECM变化的反应中的基本作用。该研究还表明,TMEM2诱导的TGF-β信号传导直接诱导线粒体分裂,在ECM重塑和线粒体功能之间提供了机制联系。这项研究还揭示了TMEM2通过线粒体应激信号促进免疫的新作用。作者证明,TMEM2诱导的ECM重塑增强了线粒体应激反应,进而激活了对病原体的免疫防御。这一发现为ECM如何有助于宿主防御机制提供了一个新的视角,可能是通过改变线粒体的形式和功能来更好地对抗入侵的微生物。

    总的来说,这些发现展示了ECM如何作为外部环境和线粒体功能之间的动态界面。这项研究不仅促进了我们对线粒体稳态的理解,还强调了ECM在协调细胞对环境挑战的反应中的重要性。将TGF-β-SMAD途径确定为该过程中的核心角色,为探索靶向该途径在以ECM重塑为特征的各种疾病(如类风湿性关节炎、癌症和炎症)中的治疗潜力开辟了新的途径。

  • 原文来源:https://www.cell.com/cell/abstract/S0092-8674(24)00638-X
相关报告
  • 《Cell | 肠-肝轴调控肠道干细胞稳态》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-01-27
    • 2024年1月26日, 美国国立卫生研究院,国家癌症研究院吴船实验室在Cell在线发表题为 Gut-liver axis calibrates intestinal stem cell fitness的研究论文。 胃肠道通过与全身不同内脏器官的沟通协调,对维持全身正常生理机能方面发挥着关键作用。肠-肝轴被普遍认为有着重要的生理病理以及临床意义。通过胆道、门静脉和体循环相互调节,肠-肝轴为肠道和肝脏疾病的治疗提供了许多新的药物靶点。以往的研究表明,在感染或炎症期间,由于肠道屏障受损,肝脏通过感知微生物的表面抗原,代谢产物等来产生抗炎反应。然而,目前尚不清楚肠道和肝脏相互沟通的细胞和分子机制,以及继而如何控制健康和疾病期间的肠道稳态和组织修复。 该研究通过肝切除术和蛋白质组学分析,揭示肝源性可溶性因子色素上皮衍生因子 (PEDF) 作为 Wnt 信号通路的抑制剂,限制肠道干细胞 (ISC) 的扩增。同时,PEDF 在肝脏中的丢失或抑制也会导致 ISC 扩增。研究人员发现 PEDF 通过竞争 Wnt 配体和抑制 Wnt/β-catenin信号通路来限制 ISC 增殖。此外,即使处于正常生理静息状态,PEDF 在血液循环中也持续存在,表明了ISC 在组织稳态下对PEDF 的生理需求,从而消除潜在的ISC过度增殖而导致的肠道肿瘤的风险。这些结果都证明了肠-肝轴在维持肠道正常生理中起到的关键作用。
  • 《窦非教授课题组在Journal of Molecular Biology上发表研究性论文发现分子伴侣Hsp82磷酸化状态在细胞感知葡萄糖信号中对线粒体稳态的调控作用》

    • 来源专题:生物育种
    • 编译者:姜丽华
    • 发布时间:2023-04-21
    • 2023年4月,窦非教授课题组在Journal of Molecular Biology上发表题为“The phosphorylation status of Hsp82 regulates mitochondrial homeostasis during glucose sensing in Saccharomyces cerevisiae”的研究性文章。2019级博士研究生彭冠族为第一作者,窦非教授和李万杰高级工程师为共同通讯作者。 越来越多的研究表明即使在有氧条件下,很多细胞,如酿酒酵母、肿瘤细胞和神经干细胞等倾向于采用糖酵解而不是氧化磷酸化的代谢方式来分解葡萄糖,为细胞快速分裂或应对应激时合成大量所需原料。这两种代谢方式的转换具有重要的生物学意义。但目前关于代谢转换过程的调控机制尚不明确。近年来,我们实验室以酿酒酵母为研究对象对调控代谢转换的关键分子开展研究。在有氧糖酵解转换为氧化磷酸化代谢方式的双相转换期时,酵母细胞内会发生时间依赖性的基因和蛋白表达的动态变化,线粒体的功能和形态网络也随之发生动态变化以适应氧化磷酸化代谢方式的需求。实验室前期的工作发现,胞外葡萄糖水平通过共分子伴侣Ppt1调控Hsp82 Ser485残基的磷酸化状态来影响Hsp82在细胞质和细胞核之间的动态分布。模拟Hsp82 Ser485残基去磷酸化的Hsp82S485A突变体中Hsp82在细胞质和细胞核之间的动态分布异常。此外,Hsp82S485A突变体具有异常的液泡形态,静息期时细胞直径较小,及无法在葡萄糖饥饿条件下存活等异常特征(Shang X, Cao G, Gao H, et al. A Single Site Phosphorylation on Hsp82 Ensures Cell Survival during Starvation in Saccharomyces cerevisiae [J]. Journal of Molecular Biology, 2020, 432(21): 5809-5824.)。但我们对于Hsp82S485A突变影响了细胞内哪些代谢通路及其分子机制还不清楚,有待进一步探索。 在本研究中,我们发现分子伴侣Hsp82除了参与代谢转换过程中早期诱导的应激反应,Hsp82 Ser485残基的磷酸化状态还调控了代谢转换过程中线粒体的功能和形态结构来维持细胞内线粒体稳态。Hsp82S485A突变表现出与线粒体缺陷相关的异常生长表型,例如小克隆表型、生长速率缓慢和无法利用不可发酵碳源等。进一步探索生长缺陷的原因,我们发现Hsp82S485A突变体导致线粒体功能障碍,包括细胞耗氧率降低、线粒体电子传递链缺陷、线粒体膜电位降低以及线粒体基因组完全丢失。此外,Hsp82S485A突变体线粒体呈断裂状或球状的异常形态,线粒体结构明显肿胀而且线粒体嵴结构缺失,这可能是其线粒体功能障碍的主要原因。通过对野生型菌株和Hsp82S485A菌株的转录组和蛋白质组进行分析和验证后,我们发现Hsp82 Ser485残基的磷酸化状态可能通过影响线粒体裂变和融合相关蛋白的稳定性来调控线粒体功能和形态。该研究为代谢转换过程中从葡萄糖感知到线粒体功能和形态变化的信号通路提供潜在的关键分子。 目前本课题研究已发表了两篇研究性论文和申请了一项发明专利。后续我们将对胞外葡萄糖水平调控Hsp82 Ser485残基磷酸化修饰以及Hsp82调控线粒体稳态的分子机制开展进一步的研究。