《窦非教授课题组在Journal of Molecular Biology上发表研究性论文发现分子伴侣Hsp82磷酸化状态在细胞感知葡萄糖信号中对线粒体稳态的调控作用》

  • 来源专题:生物育种
  • 编译者: 姜丽华
  • 发布时间:2023-04-21
  • 2023年4月,窦非教授课题组在Journal of Molecular Biology上发表题为“The phosphorylation status of Hsp82 regulates mitochondrial homeostasis during glucose sensing in Saccharomyces cerevisiae”的研究性文章。2019级博士研究生彭冠族为第一作者,窦非教授和李万杰高级工程师为共同通讯作者。

    越来越多的研究表明即使在有氧条件下,很多细胞,如酿酒酵母、肿瘤细胞和神经干细胞等倾向于采用糖酵解而不是氧化磷酸化的代谢方式来分解葡萄糖,为细胞快速分裂或应对应激时合成大量所需原料。这两种代谢方式的转换具有重要的生物学意义。但目前关于代谢转换过程的调控机制尚不明确。近年来,我们实验室以酿酒酵母为研究对象对调控代谢转换的关键分子开展研究。在有氧糖酵解转换为氧化磷酸化代谢方式的双相转换期时,酵母细胞内会发生时间依赖性的基因和蛋白表达的动态变化,线粒体的功能和形态网络也随之发生动态变化以适应氧化磷酸化代谢方式的需求。实验室前期的工作发现,胞外葡萄糖水平通过共分子伴侣Ppt1调控Hsp82 Ser485残基的磷酸化状态来影响Hsp82在细胞质和细胞核之间的动态分布。模拟Hsp82 Ser485残基去磷酸化的Hsp82S485A突变体中Hsp82在细胞质和细胞核之间的动态分布异常。此外,Hsp82S485A突变体具有异常的液泡形态,静息期时细胞直径较小,及无法在葡萄糖饥饿条件下存活等异常特征(Shang X, Cao G, Gao H, et al. A Single Site Phosphorylation on Hsp82 Ensures Cell Survival during Starvation in Saccharomyces cerevisiae [J]. Journal of Molecular Biology, 2020, 432(21): 5809-5824.)。但我们对于Hsp82S485A突变影响了细胞内哪些代谢通路及其分子机制还不清楚,有待进一步探索。

    在本研究中,我们发现分子伴侣Hsp82除了参与代谢转换过程中早期诱导的应激反应,Hsp82 Ser485残基的磷酸化状态还调控了代谢转换过程中线粒体的功能和形态结构来维持细胞内线粒体稳态。Hsp82S485A突变表现出与线粒体缺陷相关的异常生长表型,例如小克隆表型、生长速率缓慢和无法利用不可发酵碳源等。进一步探索生长缺陷的原因,我们发现Hsp82S485A突变体导致线粒体功能障碍,包括细胞耗氧率降低、线粒体电子传递链缺陷、线粒体膜电位降低以及线粒体基因组完全丢失。此外,Hsp82S485A突变体线粒体呈断裂状或球状的异常形态,线粒体结构明显肿胀而且线粒体嵴结构缺失,这可能是其线粒体功能障碍的主要原因。通过对野生型菌株和Hsp82S485A菌株的转录组和蛋白质组进行分析和验证后,我们发现Hsp82 Ser485残基的磷酸化状态可能通过影响线粒体裂变和融合相关蛋白的稳定性来调控线粒体功能和形态。该研究为代谢转换过程中从葡萄糖感知到线粒体功能和形态变化的信号通路提供潜在的关键分子。

    目前本课题研究已发表了两篇研究性论文和申请了一项发明专利。后续我们将对胞外葡萄糖水平调控Hsp82 Ser485残基磷酸化修饰以及Hsp82调控线粒体稳态的分子机制开展进一步的研究。

  • 原文来源:https://cls.bnu.edu.cn/xwzx/xwkx/3b15df9307d647e48a2f7d837fb6a787.htm
相关报告
  • 《肠-脑葡萄糖在能量稳态中的信号发送》

    • 来源专题:重大新药创制—内分泌代谢
    • 编译者:李永洁2
    • 发布时间:2017-06-13
    • 肠道糖异生是最近发现的一种影响能量稳态的功能。肠道糖异生由特定营养物诱导,并释放葡萄糖,释放的葡萄糖能被由门静脉周围的神经系统感知。这引发了一个对由大脑控制的葡萄糖和能量管理参数产生正向影响的信号。这一认识扩展了我们对肠-脑轴通常受胃肠激素影响的认知。在此,我们提出了与肠道糖异生产生条件有关的几个问题,并揭示了其可能的代谢益处。同时,这也导致了由通过自然选择对其保护而赋予其优势的问题的产生。
  • 《分子细胞卓越中心发现核仁新结构调控核糖体RNA末端加工机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-03-11
    • 3月9日,中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)陈玲玲研究组在《自然》(Nature)上,在线发表了题为Nucleolar URB1 ensures 3' ETS rRNA removal to prevent exosome surveillance的研究论文。该工作利用高分辨率活细胞显微成像技术,通过筛选200个核仁候选蛋白质发现12个在纤维中心/致密纤维组分(FC/ DFC)外围富集的蛋白质,并命名该区域为致密纤维组分外侧区域(periphery of DFC,PDFC)。研究解析发现,位于PDFC的URB1(unhealthy ribosome protein 1)是一种具有非流动特征的核仁蛋白质,对维持PDFC的完整性、锚定pre-rRNA 3’端及保证其正确折叠和加工起到重要作用。该工作揭示了核仁的超微精细结构,为解析核仁的功能和结构提供了全新见解,并为探索核仁蛋白质在pre-rRNA加工中的功能协调以及对核糖体生成和胚胎发育影响提供了全新思路。   陈玲玲研究组长期致力于lncRNA代谢与功能的研究。前期研究通过non-poly(A)测序(Yang et al., Genome Biol 2011)发现一类新型lncRNA家族。它们来自内含子,两端以snoRNA结尾,被命名为sno-lncRNA(Yin et al., Molecular Cell 2012)。SLERT是其中一个sno-lncRNA,完全定位在细胞核仁(Xing et al., Cell 2017)。核仁是细胞核内一个复杂且高度动态变化的无膜亚结构,是细胞核内核糖体RNA(ribosomal RNA,rRNA)的加工厂。它在调节rRNA的转录、加工以及核糖体亚基组装中具有重要作用。核仁在形态上由内而外可以分为三层结构——多个纤维中心(Fibrillar Center,FC)和致密纤维组分(Dense Fibrillar Component,DFC)形成球状结构镶嵌在颗粒区(Granular Component,GC)内。既往研究表明,SLERT直接结合核仁蛋白DDX21并调控其形成的环状结构的大小进而促进RNA聚合酶I转录(Xing et al., Cell 2017;Wu et al., Science 2021)。RNA聚合酶I转录复合物聚集在FC区域边缘对核糖体DNA(rDNA)进行转录;rRNA前体(pre-rRNA)加工蛋白质在DFC区域参与调控rRNA前体的定向转运和核仁DFC环簇状结构的组装(Yao et al., Molecular Cell 2019)。这些在FC/DFC单元产生的rRNA占细胞内总RNA的约85%,因而在FC/DFC中rRNA成熟的过程是一个受到精密调控的过程。加工修饰完成的pre-rRNA进入GC区域参与核糖体亚基的组装。核仁的重要功能毋庸置疑,但多数核仁蛋白质的精确定位及其如何参与pre-rRNA高效有序加工等基础生物学问题尚不清楚。   研究利用CRISPR/Cas9技术构建了DFC/GC双色荧光蛋白质标记的参考细胞系,在此细胞系内对200个核仁候选蛋白质进行了高分辨率的活细胞成像,并筛选到140个定位在细胞核仁不同亚结构区域的蛋白质。对这140个核仁蛋白质的研究发现,12个蛋白质定位于DFC外部,形成厚度约为200 nm的球壳状新结构,被命名为PDFC。研究进一步利用光学超分辨显微成像系统性地完善了核仁的精细亚结构分析,为更好地解析核仁组织结构和工作机制奠定了重要基础。   研究发现,PDFC关键蛋白质URB1具有分子量大、流动性慢的特征,对于维持PDFC的结构和功能颇为重要。此外,URB1还参与调控pre-rRNA 3’末端ETS 区域 (External transcribed spacer, ETS)折叠和加工。URB1在PDFC的定位参与了3’ETS的锚定、折叠与去除。URB1缺失导致3’ETS折叠异常,U8 snoRNA与pre-rRNA的结合受阻,导致3’ETS的加工异常。   这些异常的pre-rRNA中间产物在核仁中大量累积,进而激活RNA稳态监控系统(RNA Exosome)在核仁发挥活性,引发异常pre-rRNA的降解,致使成熟的28S rRNA减少,无法维持细胞内核糖体的稳态和蛋白质合成,因而造成斑马鱼和小鼠的早期发育缺陷,甚至死亡。   该工作利用超高分辨率生物成像、单分子RNA成像、RNA二级结构解析以及动物模型等多种研究手段,全面揭示了核仁精细结构与pre-rRNA的加工相互协同,共同维持核仁内微环境稳定,为认识核仁功能提供了全新见解。此外,该研究证明了URB1这类非流动性蛋白质在核仁液-液相分离环境中的关键组织作用,为探究三维pre-rRNA加工机制、核仁组装形成和功能提供了新思路。   研究工作得到中国科学院、国家自然科学基金、科技部和上海市科学技术委员会等的资助,并获得分子细胞卓越中心细胞分析技术平台、斑马鱼技术平台、分子生物学技术平台和浙江大学良渚实验室的支持。