《俄3D打印航空发动机通过飞行试验》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-07-29
  • 日前,在俄罗斯鞑靼斯坦卡赞巴什航空中心,使用A30轻型无人机,俄罗斯科研人员首次进行了用3D打印的MGTD-20燃气涡轮航空发动机的飞行测试工作。由于测试工作顺利完成,俄有关部门计划在2021年至2022年对该发动机进行量产。

    据悉,用3D打印的MGTD-20航空发动机由俄联邦国家科学中心全俄航空材料科研所和西蒙诺夫试验设计局科研生产联合体共同研制成功,俄罗斯前景研究基金会提供了资金支持。

    飞行测试以西蒙诺夫试验设计局科研生产联合体研发的产品A30轻型无人机为实验室。该无人机翼展3米,起飞重量40千克,有效载荷10千克。3D打印的MGTD-20燃气涡轮航空发动机推力22千克。

    科研人员介绍称,首次试飞期间,A30轻型无人机按计划以自动驾驶模式飞过170米高的航路点,飞行中的最大速度达到每小时154公里,发动机最高转速为每分钟101600转,工作转速为每分钟58000转,最后成功降落。

    来自俄罗斯前景研究基金会消息称,俄罗斯科研机构早在2015年11月就开始研发3D打印航空发动机技术。由于使用了3D打印技术,MGTD-20发动机主要零件的生产时间缩短了20倍,生产成本降低了一半以上。在该项目的框架内,还使用了逐层激光熔合耐热金属和铝合金粉末复合材料技术工艺生产MGTD部件。

    另外,俄罗斯科研人员还研制出了推力分别为10千克、125千克和150千克的发动机,并计划在2021年至2022年期间对这些发动机进行量产。

  • 原文来源:http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2020-07/29/content_449626.htm?div=-1
相关报告
  • 《航空发动机低压点火试验研究进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-04-21
    • 燃烧室是航空发动机三大核心部件之一,其点火可靠性决定着发动机的稳定工作边界,进一步决定了飞机/舰船的飞行包线、运行区域和安全性。高空条件下,低温低压条件使得高空点火更加复杂。为了更加清晰地认识高空点火过程,轻型动力实验室开展了常温低压点火边界及火焰传播过程研究。基于高空点火实验台,轻型动力实验室研究人员首先对常温低压下的点火边界进行研究。图1为室温条件下(10℃),旋流器压降1%,2%及3%时,最小点火当量比随高度(压力)的变化。结果表明对于同一旋流器压降,随着高度的增加,最小点火当量比增大,这是由于低压下,空气雾化质量变差及化学反应速率减小共同造成的,并且高度越高,压力对点火边界的影响越明显;在相同高度下,随着旋流器压降的增大,最小点火当量比减小,这是由于气流速度增大改善了燃油雾化,从而降低了最小点火当量比。   为了详细研究压力对火焰传播的影响,采用高速相机对旋流器压降2%工况时,不同高度(6km、8km及10km)下的点火过程进行试验研究。图2显示了不同高度下五个不同时刻(火花放电时刻(t0),初始火核形成时刻(t1),火焰传播至相邻头部时刻(t2),火焰传播至靠近壁面头部时刻(t3)及五头部完全燃烧时刻(t4))的火焰图像。结果表明,在旋流器压降为2%时,不同压力下的火焰传播路径基本相似,即火焰首先在中心单头部传播并稳定在喷嘴附近,随后相邻头部的回流区捕捉已燃头部下游火焰,使得火焰同时传播至相邻头部,最终在五头部燃烧室内稳定燃烧。通过分析不同高度下,各个阶段的时间间隔发现,低压对点火过程的影响主要表现在初始火核形成及早期火焰传播(由单头部向三头部的联焰过程),而对后期火焰传播影响较小,这是因为低压会恶化燃油的雾化蒸发,随着燃烧室中引燃区域的增加,燃烧室温度升高,低压对燃油雾化蒸发的影响逐渐被燃烧室高温所改善,因此后期火焰的传播过程的时间差异较小。   基于上述常温低压下的试验结果,研究团队下一步将采用液氮换热构建低温环境,进一步研究低温低压对火焰传播过程的影响。
  • 《俄罗斯测试新一代转子活塞式航空发动机 陶瓷基复合材料显神威》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-06-21
    • 俄罗斯中央巴拉诺夫航空发动机制造研究所成功地对新一代转子活塞式航空发动机进行了一系列测试。发动机在主要工作模式下持续运行了4个小时,完成了试验大纲规定的主要检测项目。发动机的一些其他性能测试工作还将持续进行,包括将在中央巴拉诺夫航空发动机制造研究所试验台上进行的寿命试验和高原气候试验。 该发动机的结构采用了具有较高机械-物理特性的新一代材料,即金属陶瓷基复合材料和集成陶瓷复合材料。该发动机还采用了最新研制的使用增压空气来冷却涡轮增压系统的新系统,该系统的部分元件使用俄罗斯本国原材料并采用3D技术打印生产。 该发动机的电子操纵系统同样也是全新的设计。正是由于上述创新方案都非常成功,所以新型发动机的功率比俄罗斯以前研制的转子活塞式航空发动机的功率提高了一倍左右。 2016年俄罗斯中央巴拉诺夫航空发动机制造研究所成立了FPI实验室,该实验室成立的目的是应用陶瓷基复合材料和增材制造技术来进一步促进俄罗斯新一代航空发动机制造技术的发展。