《Nature | FLVCR1 脂头基团进入肯尼迪通路的结构基础》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-05-03
  • 2024年5月1日,纪念斯隆-凯特琳癌症中心等机构的研究人员在期刊Nature上发表了题为Structural basis of lipid head group entry to the Kennedy pathway by FLVCR1的文章。

    磷脂酰胆碱和磷脂酰乙醇胺是哺乳动物细胞中含量最多的两种磷脂,它们分别由胆碱和乙醇胺通过肯尼迪途径重新合成。尽管这些脂质具有重要作用,但使细胞吸收胆碱和乙醇胺的机制仍然未知。

    该研究发现,FLVCR1(其突变会导致神经退行性综合征后柱共济失调和视网膜色素变性症)编码的蛋白质能将细胞外的胆碱和乙醇胺转运到细胞内,并被下游激酶磷酸化,从而启动肯尼迪通路。存在胆碱和乙醇胺时的 FLVCR1 结构显示,这两种代谢物都与一个由芳香族和极性残基组成的共同结合位点结合。尽管与一个共同的结合位点结合,FLVCR1 与胆碱中较大的季胺和乙醇胺中的伯胺的相互作用方式却不同。结构诱导突变确定了对乙醇胺转运至关重要、但对胆碱转运却无关紧要的残基,从而实现了肯尼迪途径两个分支入口点的功能分离。

    总之,这些研究揭示了 FLVCR1 是如何成为肯尼迪途径两个分支磷脂生物合成的共同起源的高亲和性代谢物转运体。

  • 原文来源:https://www.nature.com/articles/s41586-024-07374-4
相关报告
  • 《Nature | FLVCR2将胆碱摄入大脑的结构和分子基础》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-05-03
    • 2024年5月1日,哥伦比亚大学等机构的研究人员在 Nature期刊发表了题为Structural and molecular basis of choline uptake into the brain by FLVCR2的文章。 胆碱是人体必需的营养物质,细胞膜合成、表观遗传修饰和神经传递都需要大量的胆碱。大脑对胆碱的需求量尤其大,但胆碱是如何进入大脑的却仍是个未知数。最近确定的主要促进剂超家族转运体 FLVCR1(又称 MFSD7B 或 SLC49A1)是一种胆碱转运体,但在血脑屏障中的表达量并不高,而相关蛋白 FLVCR2(又称 MFSD7C 或 SLC49A2)则在血脑屏障的内皮细胞中表达。先前的研究表明,人类 Flvcr2 基因突变会导致脑血管异常、脑积水和胚胎死亡,但 FLVCR2 的生理作用尚不清楚。 该研究通过体内和体外实验证明,FLVCR2 是一种 BBB 胆碱转运体,负责大脑中大部分胆碱的吸收。研究人员还利用冷冻电镜测定了胆碱结合的 FLVCR2 在内向和外向状态下的结构。这些结果揭示了大脑是如何获得胆碱的,并从分子层面揭示了FLVCR2是如何在芳香笼中结合胆碱并介导胆碱摄取的。该工作可以为向大脑靶向输送治疗药物提供一个新的框架。
  • 《Nature | AAA+ATP酶激活转座酶的结构基础》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-06-29
    • 2024年6月26日,玛格丽塔·萨拉斯生物研究中心Ernesto Arias-Palomo、约翰斯霍普金斯大学James M. Berger共同通讯在Nature发表题为Molecular basis for transposase activation by a dedicated AAA+ ATPase的文章,揭示了专用AAA+ATP酶激活转座酶的分子基础,为染色体重排的调节和耐药基因的传播提供了见解。 研究的重点是IS21转座酶系统,该系统可作为阐明AAA+ATP酶如何调节转座酶中的位点选择性和催化功能的模型。研究人员证明,在这一过程中起关键作用的IstB ATP酶会自我组装成一种自动抑制的二聚体五聚体,将靶DNA紧密弯曲成半螺旋。这种独特的结构通过核苷酸控制的组装和DNA变形来稳定,从而实现基于结构的位点选择性和转座酶募集。作者发现,两个IstB十聚体可以二聚化,将靶核酸稳定成与IstA转座酶结合的S形扭结构型。这种相互作用形成了大约1MDa的转座子复合体,突出了特定相互作用在刺激调节ATP酶活性和触发转座酶上的大构象变化中的重要性,该转座酶定位催化位点以进行DNA链转移。 研究还表明,IstA转座酶具有两个螺旋-转螺旋(HTH)DNA结合结构域、一个DDE催化基序和一个β-桶,后面是一个柔性的羧基末端区域。据报道,IstA可以寡聚成高度交织的四聚体,将两个转座子末端突触形成超螺旋构型。然而,这种四聚体状态是无活性的,并且需要调节性IstB因子来进行转座。研究人员结合生物化学和结构方法,详细解析了IS21的核苷酸依赖性转座反应。他们的发现表明,核苷酸周转周期在允许IstB支持IstA转座方面发挥着至关重要的作用。该研究进一步证明,IstB AAA+通过利用其N端延伸促进蛋白质低聚和靶向双链弯曲来促进IS21转位,同时将AAA+结构域保持在稳定DNA上组装的非活性构型中。 此外,该研究表明,IstB通过捕获S形靶DNA来重塑双链DNA,该靶DNA是靶底物和由IstA转座酶带入复合物的供体DNA之间的接触点。在IstB十聚体连接处的这种尖锐的DNA弯曲用作靶底物和由IstA转座酶带到复合物的供体DNA之间的接触点。 这项研究的发现不仅有助于我们理解DNA转位的分子机制,而且突出了这些见解在生物技术和基因编辑中的潜在应用。控制和操纵转座元件的能力为基因工程和开发新的治疗策略提供了令人兴奋的可能性。正如作者所总结的,未来的研究将需要建立IstB核苷酸转换的确切机制作用,以及其他转座相关分子匹配物使用类似方法激活其同源转座酶的程度。