《Science | 一类新的植物-病原体互作模式及其机制》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-02-16
  • 2024年2月16日,清华大学/西湖大学柴继杰教授团队、南京农业大学王源超教授团队与合作者在Science上发表了题为A plant mechanism of hijacking pathogen virulence factors to trigger innate immunity的研究论文,揭示了植物通过劫持病原体细胞壁降解酶的活性来促进植物免疫的全新分子机制。

    果胶多聚半乳糖醛酸水解酶(polygalacturonase, PG)在多种植物病原体(细菌、真菌、卵菌、线虫和昆虫)中均有发现。PG是病原体入侵植物过程中最早分泌的细胞壁降解酶之一,它对病原体的致病性必不可少。PG可以将果胶多聚半乳糖醛酸(polygalacturonic acid, PGA)水解成低聚半乳糖醛酸(oligogalacturonic acid, OG)。植物通过分泌PG抑制蛋白(PG-inhibiting protein, PGIP)来抑制PG酶活性。PGIP是仅含有胞外亮氨酸重复(LRR)结构域的蛋白,在所有高等植物基因组中均有编码。

    该研究首次解析了分辨率为1.93?菜豆PGIP (PvPGIP2)与镰刀菌PG (FpPG) 复合物结构。出乎意料的是,与之前所有报道的相关复合物结构不同,PvPGIP2并未结合在FpPG的酶活中心处,这表明PvPGIP2有不同的FpPG抑制机制。

    体外酶活实验与植物功能实验表明:PvPGIP2-FpPG水解PGA的OG产物中含有比例较大的长链OG (OG10-15),其作为免疫激活子可诱导植物PTI响应;而FpPG水解PGA的产物中含有比例较大的短链OG (OG2-7),几乎不含有长链OG10-15。OG2-7可以有效地抑制PTI响应。因此,PvPGIP2巧妙地利用了病原体FpPG的酶活性,通过改变病原体FpPG酶活产物的分布,从而激活植物PTI响应。

    研究人员进一步揭示了PGIP-PG生成长链OG10-15的分子机制:PvPGIP2与FpPG结合后形成了一个全新的、更长的底物OG结合口袋,PvPGIP2增强了底物OG与FpPG的结合能力。PvPGIP2-FpPG是一个全新的多聚半乳糖醛酸水解酶,它与FpPG具有不同的底物选择性和催化活性。以解析的高分辨率PvPGIP2-FpPG复合物结构为基础,研究者对PGIP进行了工程化改造。结果表明,改造后的PGIP具有了产生更多OG10-15的能力,并且能够使得改造后的PGIP获得新的PG识别功能。

    综上所述,该研究揭示了PGIP-PG介导植物免疫的分子机制。目前已有很多证据表明病原体利用效应蛋白劫持宿主体内信号通路、抑制植物免疫以促进其侵染宿主。该研究显示植物可以利用类似的机制,反向劫持病原体效应蛋白,从而激活植物免疫。该研究为植物与病原体互作领域提供了一个全新的研究范式,也为植物抗病育种提供了新的策略。同时,该项研究也为研究动物与病原体互作提供了思路。

  • 原文来源:https://www.science.org/doi/10.1126/science.adj9529
相关报告
  • 《水生所确认水生异形叶发育机制研究的模式植物》

    • 来源专题:长江流域资源与环境知识资源中心 | 领域情报网
    • 发布时间:2017-05-11
    • 作者: 胡诗琦 2017-05-10 浏览量:.    一些水生植物的沉水叶与陆生叶存在明显差异,被称为异形叶。异形叶的发育受到诸多环境因子的影响和植物激素的调控,其分子机制有待阐明。   中国科学院水生生物研究所水生植物生理学科组将以往报道的异形叶植物做了收集和筛查,试种了前人报道的水毛茛、水马齿、狐尾藻和水生蔊菜等,发现水毛茛体积过大,水马齿和狐尾藻异形叶性不够明显,水生蔊菜难于转化且对植物激素的反应不够典型,它们作为模式植物均存在问题。对一种叫异叶水蓑衣的植物进行细致的研究,发现其异形叶性表型明显,植株大小适中(株高 10-30cm )、扩繁方便、容易转化,其叶形对水陆生境、温度、湿度、 CO2 浓度、光照等环境因子十分敏感,对激素和抑制剂的处理具有代表性,加上基因组相对较小( 800M ),具有作为异形叶研究模式植物的条件。目前,该学科组已建立了标准化的扩繁、培养、叶形分析、愈伤诱导和农杆菌介导转化等实验方法,并在此基础上通过对环境因素、激素和抑制剂以及关键基因表达等对应关系的分析,初步建立了异形叶叶形调控的框架。   该研究从分子水平阐述了异叶水蓑衣异形叶的发育机制,为深入揭示异形叶调控的机制奠定了基础。相关研究成果已发表于“ Plant Cell Reports ”。   文章链接: https://link.springer.com/article/10.1007/s00299-017-2148-6 背景知识: 异叶水蓑衣( Hygrophila difformis )又名水罗兰,是爵床科水蓑衣属多年生湿生或挺水草本植物,高 10-35cm ,全株密生腺毛,尤以茎部最密。叶两型,挺水叶椭圆形,粗锯齿,沉水叶呈青黄色,深裂状;花单生、腋生,花冠苍紫色,花期春秋季。原产东南亚及印度的溪流、河沟、池塘等水域,水陆两生。我国近年作为水族植物有引入和栽培,但由于用途不广,长期未受关注;对该植物的研究目前能够检索到的仅有一篇关于其挺水部分乙醇提取物对中枢神经的镇静作用的文章,能强化安眠药的安眠效果。
  • 《分子植物卓越中心发现植物免疫激活新机制》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2024-11-12
    •     近年来,病虫害频繁爆发造成作物减产和品质下降。而大量使用化学农药控制农作物病虫害,破坏生态环境,威胁人类健康。培育广谱抗病品种是保障粮食安全、发展绿色农业、维护生态环境的重要举措之一。发掘广谱持久抗病基因,揭示植物免疫激活调控广谱抗病的分子机制,是农作物抗病育种的重要理论基础。     11月8日,《科学》(Science)以“背靠背”形式在线发表了中国科学院分子植物科学卓越创新中心两项重要科研成果。中国科学院院士、分子植物卓越中心研究员何祖华团队与研究员张余团队,联合复旦大学研究员高明君团队、浙江大学教授邓一文团队完成了题为A canonical protein complex controls immune homeostasis and multipathogen resistance的研究成果。分子植物卓越中心万里团队完成了题为Activation of a helper NLR by plant and bacterial TIR immune signaling的研究论文。     植物免疫的本质是识别“非我”。植物免疫系统通过识别病原微生物进而激活自身的免疫反应。该系统由两道防线组成。一是通过植物细胞表面感受器识别病原菌后产生的基础抗病性(PTI),而PTI相对温和且易被病原菌分泌的毒性蛋白突破。二是在进化中植物产生第二道防线即植物细胞内感受器NLR蛋白识别病原菌分泌的毒性蛋白后引起的专化性抗性(ETI),而该防线反应强烈且能够赋予植物强抗病性。植物ETI免疫反应依赖于植物特定的NLR感受器蛋白识别特定病原菌分泌的特定毒性蛋白。当前,由于ETI的特异性,植物抗病育种和病虫害防治缺乏有效方法激活植物ETI。如何克服ETI对病原菌的特异性以及实现有效的多病原广谱抗病性成为植物免疫研究的重要课题。 前期,何祖华及合作团队发现了水稻免疫抑制基因ROD1。该基因突变引起活性氧积累,产生免疫自激活表型,提高水稻对多个病原菌如稻瘟病、白叶枯病和纹枯病的抗性。而对于ROD1抑制免疫激活的信号网络尚不清楚。该团队采用EMS化学诱变和γ射线物理诱变筛选rod1抑制子的策略,经过大规模的田间表型鉴定筛选,获得18个rod1抑制子株系。基因克隆和全基因组测序分析显示,这些抑制子分别是OsTIR、OsEDS1、OsPAD4和OsADR1基因突变。研究显示,禾本科作物的细胞内感受器OsTIR蛋白具有产生免疫小分子pRib-AMP的功能,而小分子pRib-AMP能够激活水稻OsEDS1、OsPAD4和OsADR1蛋白形成免疫复合体EPA以激发免疫反应。进一步,研究发现,水稻免疫抑制蛋白ROD1与OsTIR互作,影响OsTIR的酶活,从而抑制小分子pRib-AMP的生成,避免EPA复合体激发免疫反应,维持免疫的稳态。当病原菌侵染时,ROD1被降解,OsTIR蛋白被释放后生成小分子激活免疫复合体EPA,产生对多种病原菌的广谱抗性。该研究揭示了五组分的信号网络调控植物免疫稳态的分子机制,为培育广谱抗多种病原菌的作物新品种奠定了理论基础,提供了靶标基因。     无独有偶的是,万里团队发现了植物细胞内感受器的TIR蛋白可生成小分子2’cADPR。这类小分子作为前体在植物体内可以被转化生成pRib-AMP,从而激活EPA免疫复合体,提高植物抗病性。利用2’cADPR处理植物即可诱导类似于ETI的强抗病性,实现了在没有特定病原菌侵染的情况下人为可控地激活植物强ETI免疫反应。相对于pRib-AMP,2’cADPR性质更稳定,更适合开发为植物免疫激活剂。这为发展绿色农业提供了可以激发农作物广谱抗病性的新型“生物农药”,并能够替代化学农药,减少对生态环境的负面影响。同时,一些细菌的TIR蛋白可以产生2’cADPR并激活植物的ETI免疫反应,进而该团队揭示了植物和细菌免疫通路交互的分子机理。     植物细胞内感受器TIR蛋白介导的ETI抗性是农作物抗病育种的重要靶标。因此,研究植物免疫受体及其工作机理,实现对植物免疫受体的人工定向改造,能够解决植物病害问题。上述两项成果共同揭示了在不同植物中保守的由小分子pRib-AMP和蛋白复合体EPA介导的免疫激活新机制,为植物病害防控提供了新型“生物农药”靶标。