《研究表明更可靠的碳基微电子技术可解决水问题》

  • 来源专题:水环境管理与流域管理
  • 编译者: 王阳
  • 发布时间:2018-06-25
  • Research Charts the Way to More Reliable Carbon-based Microelectronics.
    Details]Satish Kumar, an associate professor in the George W. Woodruff School of Mechanical Engineering, and Jialuo Chen, a graduate student at Georgia Tech.
    Download ImageMore photos
    Posted June 14, 2018 • Atlanta, GA
    Carbon nanotubes – cylindrical formations of carbon atoms with incredible strength and electrical conductivity – hold great promise for creating new micron-scale low-power electronic devices.
    But finding a way to build a reliable computing platform based on the carbon material has been a major challenge for researchers.
    Now, a team of mechanical and materials engineers at Georgia Institute of Technology has devised a method for identifying performance variabilities in transistors made from carbon nanotube networks. The new approach could help researchers create more reliable devices and ultimately harness that technology for a range of applications such as wearable electronics, sensors and antennas.
    “Using carbon nanotubes to make thin-film transistors with good performance repeatability has been challenging because of the random imperfections in the fabrication process,” said Satish Kumar, an associate professor in the George W. Woodruff School of Mechanical Engineering. “Those random imperfections cause variations in the properties of the nanotubes – differences in length, diameter and chirality. All of those things can impact how conductive a nanotube is, which leads to these performance variations.
    “What we’ve done now is created a systematic way to estimate these variations that could improve reliability for carbon nanotube network based devices,” he said.
    Results from the study, which was sponsored by the National Science Foundation, were published in March in IEEE Transactions on Nanotechnology.
    While earlier research has looked at how to improve production methods for carbon nanotubes in order to achieve more uniformity, Kumar’s team focused on analyzing performance variabilities in statistical way so that performance characteristics could be more estimable.
    “Such analysis is crucial to explore the reliability and stability of carbon nanotube network based circuits and to devise techniques which can help reduce variability in circuit performance for various electronic applications,” Kumar wrote with in the paper with Jialuo Chen, a graduate student at Georgia Tech.
    While some carbon nanotubes conduct electricity much in the same way that a semiconductor such as silicon, certain carbon nanotubes have conductivity properties more similar to metal. The latter types are called metallic carbon nanotubes. The prevalence of such metallic carbon nanotubes in a network is linked to performance problems.
    The study found that the metallic-property carbon nanotubes caused performance variations more so in thin-film transistors with short channels than those with long channels, which means device designers could achieve higher performance by using networks that have a higher concentration of long channel thin-film transistors.
    The researchers also found that variations in length of the carbon nanotubes seemed to have less impact on performance as long as the network of nanotubes was dense.
    “Our results show that the performance variability of thin-film transistors can be reconstructed using the distribution function of relevant parameters which will help us to create more reliable  circuits to enable the next generation of low-cost flexible microelectronics,” Kumar said.
    This material is based upon work supported by the National Science Foundation under Grant No. CCF-1319935. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
    CITATION: Jialuo Chen and Satish Kumar, “Variability in Output Characteristics of Single-Walled Carbon Nanotube Thin-Film Transistors,” (IEEE Transactions on Nanotechnology (March 2018). http://dx.doi.org/10.1109/TNANO.2018.2803106
    DetailsA close up view of thin-film transistors formed from networks of carbon nanotubes.
    Download Image
    Contact Information.
    Josh Brown
    Research News
    (404) 385-0500
    Email: josh.brown@comm.gatech.edu
    Categories:.
    Electronics and Nanotechnology.
    增加高度  减少高度
    隐私声明服务声明 版权声明合理使用声明
    Copyright(C)2005 NSTL.All Rights Reserved 版权所有 维护制作:中国科学院文献情报中心信息系统部
    国家科技图书文献中心 地址:

相关报告
  • 《芯光润泽携手西安微电子技术研究所,推动半导体器件国产化发展》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2019-04-17
    • 近日,西安微电子技术研究所与厦门芯光润泽科技有限公司(以下简称“芯光润泽”)签署了战略合作协议,双方将在集成电路和半导体器件领域展开深度合作,助推我国半导体电子器件的国产化发展。 西安微电子技术研究所(又名骊山微电子公司)隶属于中国航天科技集团公司第九研究院,始建于1965年10月,主要从事计算机、半导体集成电路、混合集成三大专业的研制开发、批产配套、检测经营,是国家唯一集计算机、半导体集成电路和混合集成科研生产为一体的大型专业研究所,是“中兴通讯”的创办单位。据其官网消息,自成立以来,该研究所先后承担了国家220多个重点工程及武器型号的计算机、集成电路、混合集成产品配套任务,创造了我国计算机和集成电路发展史上的“29个第一”。 芯光润泽是一家拥有集研发、生产、检测等完善产业链条的第三代半导体企业,在碳化硅功率模块器件上具备绝对的产业化能力。据芯光润泽官网介绍,该公司已与西安交大、西安电子科技大学、华南理工等院校成立联合研发中心,与美的集团、爱发科集团和强茂集团等企业签署合作。 值得注意的是,厦门日报此前报道指出,国内首条碳化硅智能功率模块(SiC IPM)生产线已于2018年在芯光润泽正式投产。 “如何打破受制于人的现状,找到我国芯片产业健康发展的突破口,成为中国半导体行业和企业的前进方向。这也是我们建设我国首条‘SiC IPM生产线项目’的初衷。”芯光润泽董事长卓廷厚还表示,公司将致力于成为新兴半导体行业的独角兽。
  • 《美国国家标准与技术研究院(NIST)发布广泛征集提案,以推动微电子技术发展》

    • 编译者:李晓萌
    • 发布时间:2025-10-15
    • 近日,美国国家标准与技术研究院(NIST)发布广泛机构公告(BAA),征集旨在推动本国微电子技术发展的研究方案、原型设计与商业化解决方案。NIST芯片研发办公室将对申报项目进行滚动评审并予以资金支持。 "此项举措将助力我们甄选并支持具有创新性的先进微电子研究,从而巩固美国领导地位并加速技术开发,"代理标准与技术副部长兼NIST代理所长Craig Burkhardt表示,"我们期待见证各类创新构想共同推进微电子研究,并驱动量子计算、人工智能及生物制造等新兴领域的深度创新。" 该广泛机构公告(BAA)的核心战略目标在于巩固美国在半导体技术领域的全球领导地位,加速技术商业化进程,为占据未来产业主导权奠定基础。基于近期发布的《美国21世纪技术领导力战略》指导方针,本次提案征集将重点聚焦以下战略方向: ·半导体技术——涵盖先进半导体技术研发与原型设计,以及本土半导体人才队伍的培育; ·人工智能融合——推动人工智能在先进微电子研发领域的创新应用; ·量子技术融合——促进量子技术在先进微电子研发领域的跨界融合; ·生物技术融合——开拓生物技术与生物制造技术在微电子领域的应用场景; ·创新成果转化——强化科技创新成果的商业化应用; ·标准体系建设——推进相关技术标准体系的同步发展。 现鼓励美国营利性机构、非营利组织、经认证的高等教育机构、联邦资助的研发中心及联邦实体(如政府部门与机构)积极申报。所有申请方须提交技术白皮书作为初评依据,通过初审的项目将进入预谈判材料提交阶段。完整申报细则详见官方公告。 芯片研发办公室拟于近期举办政策说明会,就该广泛机构公告进行宏观解读,针对技术白皮书与预谈判材料的准备提供指导纲要,并回应预先征集的质询问题。关于会议注册及问题提交的具体安排,将在未来数日内发布于芯片研发项目申报专题网页。