《研究表明更可靠的碳基微电子技术可解决水问题》

  • 来源专题:水环境管理与流域管理
  • 编译者: 王阳
  • 发布时间:2018-06-25
  • Research Charts the Way to More Reliable Carbon-based Microelectronics.
    Details]Satish Kumar, an associate professor in the George W. Woodruff School of Mechanical Engineering, and Jialuo Chen, a graduate student at Georgia Tech.
    Download ImageMore photos
    Posted June 14, 2018 • Atlanta, GA
    Carbon nanotubes – cylindrical formations of carbon atoms with incredible strength and electrical conductivity – hold great promise for creating new micron-scale low-power electronic devices.
    But finding a way to build a reliable computing platform based on the carbon material has been a major challenge for researchers.
    Now, a team of mechanical and materials engineers at Georgia Institute of Technology has devised a method for identifying performance variabilities in transistors made from carbon nanotube networks. The new approach could help researchers create more reliable devices and ultimately harness that technology for a range of applications such as wearable electronics, sensors and antennas.
    “Using carbon nanotubes to make thin-film transistors with good performance repeatability has been challenging because of the random imperfections in the fabrication process,” said Satish Kumar, an associate professor in the George W. Woodruff School of Mechanical Engineering. “Those random imperfections cause variations in the properties of the nanotubes – differences in length, diameter and chirality. All of those things can impact how conductive a nanotube is, which leads to these performance variations.
    “What we’ve done now is created a systematic way to estimate these variations that could improve reliability for carbon nanotube network based devices,” he said.
    Results from the study, which was sponsored by the National Science Foundation, were published in March in IEEE Transactions on Nanotechnology.
    While earlier research has looked at how to improve production methods for carbon nanotubes in order to achieve more uniformity, Kumar’s team focused on analyzing performance variabilities in statistical way so that performance characteristics could be more estimable.
    “Such analysis is crucial to explore the reliability and stability of carbon nanotube network based circuits and to devise techniques which can help reduce variability in circuit performance for various electronic applications,” Kumar wrote with in the paper with Jialuo Chen, a graduate student at Georgia Tech.
    While some carbon nanotubes conduct electricity much in the same way that a semiconductor such as silicon, certain carbon nanotubes have conductivity properties more similar to metal. The latter types are called metallic carbon nanotubes. The prevalence of such metallic carbon nanotubes in a network is linked to performance problems.
    The study found that the metallic-property carbon nanotubes caused performance variations more so in thin-film transistors with short channels than those with long channels, which means device designers could achieve higher performance by using networks that have a higher concentration of long channel thin-film transistors.
    The researchers also found that variations in length of the carbon nanotubes seemed to have less impact on performance as long as the network of nanotubes was dense.
    “Our results show that the performance variability of thin-film transistors can be reconstructed using the distribution function of relevant parameters which will help us to create more reliable  circuits to enable the next generation of low-cost flexible microelectronics,” Kumar said.
    This material is based upon work supported by the National Science Foundation under Grant No. CCF-1319935. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
    CITATION: Jialuo Chen and Satish Kumar, “Variability in Output Characteristics of Single-Walled Carbon Nanotube Thin-Film Transistors,” (IEEE Transactions on Nanotechnology (March 2018). http://dx.doi.org/10.1109/TNANO.2018.2803106
    DetailsA close up view of thin-film transistors formed from networks of carbon nanotubes.
    Download Image
    Contact Information.
    Josh Brown
    Research News
    (404) 385-0500
    Email: josh.brown@comm.gatech.edu
    Categories:.
    Electronics and Nanotechnology.
    增加高度  减少高度
    隐私声明服务声明 版权声明合理使用声明
    Copyright(C)2005 NSTL.All Rights Reserved 版权所有 维护制作:中国科学院文献情报中心信息系统部
    国家科技图书文献中心 地址:

相关报告
  • 《芯光润泽携手西安微电子技术研究所,推动半导体器件国产化发展》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2019-04-17
    • 近日,西安微电子技术研究所与厦门芯光润泽科技有限公司(以下简称“芯光润泽”)签署了战略合作协议,双方将在集成电路和半导体器件领域展开深度合作,助推我国半导体电子器件的国产化发展。 西安微电子技术研究所(又名骊山微电子公司)隶属于中国航天科技集团公司第九研究院,始建于1965年10月,主要从事计算机、半导体集成电路、混合集成三大专业的研制开发、批产配套、检测经营,是国家唯一集计算机、半导体集成电路和混合集成科研生产为一体的大型专业研究所,是“中兴通讯”的创办单位。据其官网消息,自成立以来,该研究所先后承担了国家220多个重点工程及武器型号的计算机、集成电路、混合集成产品配套任务,创造了我国计算机和集成电路发展史上的“29个第一”。 芯光润泽是一家拥有集研发、生产、检测等完善产业链条的第三代半导体企业,在碳化硅功率模块器件上具备绝对的产业化能力。据芯光润泽官网介绍,该公司已与西安交大、西安电子科技大学、华南理工等院校成立联合研发中心,与美的集团、爱发科集团和强茂集团等企业签署合作。 值得注意的是,厦门日报此前报道指出,国内首条碳化硅智能功率模块(SiC IPM)生产线已于2018年在芯光润泽正式投产。 “如何打破受制于人的现状,找到我国芯片产业健康发展的突破口,成为中国半导体行业和企业的前进方向。这也是我们建设我国首条‘SiC IPM生产线项目’的初衷。”芯光润泽董事长卓廷厚还表示,公司将致力于成为新兴半导体行业的独角兽。
  • 《Leti重点介绍了GaN电力电子技术的进展》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2020-12-27
    • 法国微/纳米技术研发中心CEA-Leti表示,其在第66届IEEE国际电子器件会议(IEDM 2020)上发表的两篇补充研究论文证实氮化镓(GaN)技术方法有望克服各种挑战。嵌入MOS栅极的先进GaN器件具有更优化的架构和性能,可以满足全球电源转换系统市场快速增长的需求。 综合考虑,这两篇论文提供了RT Nanoelec框架下GaN MOS-c HEMT栅极堆叠的新颖理解。他们展示了GaN MOS叠层表征的复杂性,以及专业的报告分析和可靠的参数值。论文《GaN-on-Si-E型MOSc-HEMT中碳相关pBTI降解机理》研究了晶体管栅极正偏压时发生的正偏压温度不稳定性(pBTI)效应背后的物理机制,以确定这种效应的根本原因并将其最小化。已经证明在正的栅极应力下电压阈值(Vth)的不稳定性是由两个陷阱陷阱引起的。第一个与栅极氧化物的缺陷有关,第二个则与栅极界面的GaN中氮原子中碳原子的存在有关。 在MOS技术中,BTI是一种常见的可靠性测试,Vth不稳定性的根本原因与氧化物缺陷有关,氧化物缺陷可由电子或空穴充电或放电,具体取决于器件类型(n / p-MOS)和偏置极性。就GaN MOS-c HEMT而言,在晶体管下方生长的外延结构非常复杂,并且远非均匀。 这项研究还证实了CEA-Leti在IEDM 2019上的一篇论文的结论,该论文表明GaN-in-N[CN]中的碳通常作为深受主引入,以创建用于击穿电压管理的半绝缘GaN层,与常见的氧化物陷阱电荷一起,导致了部分BTI不稳定性。因此,外延结构是降低GaN功率器件不稳定性的重要因素。 另一篇研究论文《GaN-on-Si MOS-c HEMT中的界面陷阱密度(Dit)提取的新颖见解》旨在表征氧化物/ GaN界面的电气质量,以了解CEA-Leti栅极堆叠的界面陷阱密度是否为GaN-on-Si MOS-c HEMT中的主要阈值电压(Vth)贡献者,并确认研发过程中开发的解决方案的性能。 界面陷阱密度(Dit)可提取在氧化物/半导体界面处具有电活性的界面缺陷的密度,以及其在能量方面与半导体带隙之间的分布。重要的是,Vth直接与易于调整的物理参数(例如金属栅极功函数和半导体的掺杂)以及某些与缺陷相关的参数(例如氧化物和界面态密度的固定或移动电荷)直接相关。如果未正确钝化和处理界面,此密度会极大地影响Vth。 在GaN MOS-c HEMT的情况下,对GaN进行干法刻蚀。氧化物沉积和这一积极的工艺步骤可能对未来的氧化物/ GaN界面产生巨大影响。因此,开发和优化基于MOS的GaN功率器件需要具有准确可靠的接口表征技术。 论文的作者Vandendaele表示,CEA-Leti的下一步工作是扩大团队对GaN MOSc HEMT的栅堆叠优化的了解,以最大程度地降低Dit值,并将最佳的产品,工艺和表征方法转移给IRT PowerGaN研究所的合作伙伴。 CEA-Leti表示,它将通过在外延、器件、无源元件,共集成和系统架构方面的进一步研究来遵循其GaN路线图,以开发GaN技术,该技术可使开关频率和功率密度达到硅的10倍,全部使用标准CMOS工艺来降低成本。