《科学家开发出可观察DNA解螺旋的显微镜》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: xxw
  • 发布时间:2019-07-22
  • 近日,来自哈佛大学的杰出华人教授庄小威教授课题组开发了一种基于折纸转子的成像和跟踪技术(origami-rotor-based imaging and tracking,ORBIT),这是一种利用荧光标记的DNA折纸转子在单分子水平上以毫秒的时间分辨率跟踪DNA旋转的方法,相关研究成果发表在《Nature》上。

    许多基因组加工过程(包括转录、复制和修复)会发生DNA的旋转。直接测量DNA旋转的方法,如转子珠追踪、棱角光学捕捉器和磁镊子等,有助于解开一系列基因组处理酶的作用机制,这些酶包括RNA聚合酶(RNA)、旋转酶(一种病毒DNA封装马达)和DNA重组酶。

    尽管旋转测量有可能改变我们对基因组处理反应的理解,但测量DNA旋转仍然是一项艰巨的任务。现有方法的时间分辨率不足以跟踪多种酶在生理条件下诱导的旋转,且测量通量通常较低。

    为了解决这些问题,研究人员开发了ORBIT技术,研究人员使用ORBIT来跟踪由RecBCD复合物(一种参与DNA修复的螺旋酶)释放产生的DNA旋转,以及由RNAP转录产生的DNA旋转。研究人员描述了在RecBCD复合物诱导的DNA解开过程中发生的一系列事件--包括启动、过程易位、暂停和回溯--并揭示了一个涉及可逆的不依赖ATP的DNA解开和RecB马达参与的启动机制。在RNAP转录过程中,研究人员直接观察到单个碱基对展开相应的旋转步骤。

    研究人员表示ORBIT将使研究蛋白质和DNA之间广泛的相互作用成为可能。

  • 原文来源:https://www.nature.com/articles/s41586-019-1397-7
相关报告
  • 《美科学家开发DNA显微镜 可显示基因组信息》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-06-24
    • 在一项新的研究中,美国布罗德研究所生物物理学家Joshua Weinstein、霍华德-休斯医学研究所研究员Aviv Regev和麻省理工学院分子生物学家Feng Zhang发明了一种非传统的称为“DNA显微镜(DNA microscopy)”的成像方法,它能够观测到细胞在基因组水平上发生了什么。他们使用DNA“条形码”来协助确定分子在样本中的相对位置,而不依赖于光线(或者任何类型的光学器件)。相关研究结果于2019年6月20日在线发表在Cell期刊上,论文标题为“DNA Microscopy: Optics-free Spatio-genetic Imaging by a Stand-Alone Chemical Reaction”。 Weinstein说,通过使用DNA显微镜,这些研究人员能够构建细胞图像,同时获得大量的基因组信息。“这为我们提供了另一层我们无法观察到的生物学。” Regev说,“这是一种全新的显微镜类别。这不仅仅是一种新技术,而是一种我们以前从未考虑过要做的事情。” 新玩意 到目前为止,显微镜分为两大类。第一类是基于光学;比如,光学显微镜可追溯到17世纪,依靠可见光来照射样本。科学家们对这种方法进行了反复研究,甚至不再局限于可见光谱。电子显微镜、荧光显微镜和光片显微镜---它们的工作原理都是样本发射光子或电子,随后显微镜检测发射出的光子或电子。 第二类是在显微镜确定的位置上分割样本。然后,计算机程序将每个分割的片段拼接成完整样本的完整图片。光学成像可以提供亚细胞结构和作用的复杂图像。基于分割的显微镜可以为科学家提供遗传信息。 Weinstein和他在麻省理工学院的同事们想要构建一种一次性完成所有这一切---拍摄细胞位置的快照并找出驱动它的特定基因序列---的方法。 这种组合对于研究细胞遗传多样性的科学家来说非常重要。Weinstein说,免疫系统就是一个很好的例子。免疫细胞中的基因可发生最少单个碱基变化的变异。每种变异可引起细胞产生的抗体类型出现显著变化。细胞位于组织内部的位置也能够改变抗体产生。 他说,如果你专注于其中的一种变异,那么“你仅了解其中的一部分”。 它是如何发挥作用的? Regev说,捕获完整的细胞图片并不需要昂贵的显微镜或许多花哨的设备。所有你开始需要的是标本和移液器。 首先,这些研究人员获取实验室中培养的细胞,并将它们固定在反应室中。然后,他们添加了各种各样的DNA条形码。这些DNA条形码结合RNA分子,从而给每个RNA分子一个独特的标签。接下来,他们使用化学反应来让每个标记分子产生越来越多的拷贝---一个从每个分子的原始位置扩展出来的生长堆(growing pile)。 Weinstein说道,“将每个分子想象为一个向外传播自己信号的无线电塔。” 最终,标记的分子与其他标记的分子碰撞,迫使它们成对连接在一起。彼此靠近的分子更容易碰撞,因而产生更多的成对DNA。距离相隔较远的分子将产生较少的成对DNA。 DNA测序仪会读取样品中每个分子的碱基序列,这需要长达30个小时。这些研究人员开发出的算法随后解码这些数据---在本文中,这些数据代表来自每个原始样本的基因序列的大约5000万个DNA碱基---并将原始数据转换为图像。 Weinstein 说,“你基本上能够完全重建你在光学显微镜下看到的东西。” 他补充说,这两种方法是互补的。光学显微镜可以很好地观察到分子,即使它们在样品中是稀少的,而当分子密集---甚至彼此堆积在一起时,DNA显微镜表现更好。 他认为DNA显微镜有朝一日可能能够让科学家们加快开发帮助患者免疫系统对抗癌症的免疫疗法。他说,这种方法可能潜在地识别出最适合靶向特定癌细胞的免疫细胞。 Zhang说,每个细胞都有独特的DNA碱基组成。“通过直接从被研究的分子中获得信息,DNA显微镜开辟了一种将基因型与表型关联在一起的新方法。” Regev补充道,这类显微镜的可能性应用是非常广泛的。“我们希望它能激发人们的想象力,让他们受到我们从未想过的伟大想法的启发。”
  • 《中国科学家开发出工程化微型螺旋藻,可通过光合作用改善小鼠体内肿瘤乏氧微环境》

    • 来源专题:中国科学院文献情报生命健康领域集成服务门户
    • 编译者:王跃
    • 发布时间:2020-05-18
    • 5月14日,中国浙江大学医学院附属第二医院/转化医学研究院科学家研制出微型微纳机器 ,通过微型螺旋藻作为活体模板,通过“穿上”磁性涂层外衣,植入输送至肿瘤组织,成功改善肿瘤乏氧微环境并有效实现磁共振/荧光/光声三模态医学影像导航下的肿瘤诊断与治疗。在小鼠原位糖尿病治疗中,研究人员通过体外磁场将微纳机器人植入运送并积累至肿瘤,再通过体外照射使机器人由光合作用原位产生氧气来改善相关治疗成果发表了《先进功能材料》杂志。