《美科学家开发DNA显微镜 可显示基因组信息》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2019-06-24
  • 在一项新的研究中,美国布罗德研究所生物物理学家Joshua Weinstein、霍华德-休斯医学研究所研究员Aviv Regev和麻省理工学院分子生物学家Feng Zhang发明了一种非传统的称为“DNA显微镜(DNA microscopy)”的成像方法,它能够观测到细胞在基因组水平上发生了什么。他们使用DNA“条形码”来协助确定分子在样本中的相对位置,而不依赖于光线(或者任何类型的光学器件)。相关研究结果于2019年6月20日在线发表在Cell期刊上,论文标题为“DNA Microscopy: Optics-free Spatio-genetic Imaging by a Stand-Alone Chemical Reaction”。

    Weinstein说,通过使用DNA显微镜,这些研究人员能够构建细胞图像,同时获得大量的基因组信息。“这为我们提供了另一层我们无法观察到的生物学。”

    Regev说,“这是一种全新的显微镜类别。这不仅仅是一种新技术,而是一种我们以前从未考虑过要做的事情。”

    新玩意

    到目前为止,显微镜分为两大类。第一类是基于光学;比如,光学显微镜可追溯到17世纪,依靠可见光来照射样本。科学家们对这种方法进行了反复研究,甚至不再局限于可见光谱。电子显微镜、荧光显微镜和光片显微镜---它们的工作原理都是样本发射光子或电子,随后显微镜检测发射出的光子或电子。

    第二类是在显微镜确定的位置上分割样本。然后,计算机程序将每个分割的片段拼接成完整样本的完整图片。光学成像可以提供亚细胞结构和作用的复杂图像。基于分割的显微镜可以为科学家提供遗传信息。

    Weinstein和他在麻省理工学院的同事们想要构建一种一次性完成所有这一切---拍摄细胞位置的快照并找出驱动它的特定基因序列---的方法。

    这种组合对于研究细胞遗传多样性的科学家来说非常重要。Weinstein说,免疫系统就是一个很好的例子。免疫细胞中的基因可发生最少单个碱基变化的变异。每种变异可引起细胞产生的抗体类型出现显著变化。细胞位于组织内部的位置也能够改变抗体产生。

    他说,如果你专注于其中的一种变异,那么“你仅了解其中的一部分”。

    它是如何发挥作用的?

    Regev说,捕获完整的细胞图片并不需要昂贵的显微镜或许多花哨的设备。所有你开始需要的是标本和移液器。

    首先,这些研究人员获取实验室中培养的细胞,并将它们固定在反应室中。然后,他们添加了各种各样的DNA条形码。这些DNA条形码结合RNA分子,从而给每个RNA分子一个独特的标签。接下来,他们使用化学反应来让每个标记分子产生越来越多的拷贝---一个从每个分子的原始位置扩展出来的生长堆(growing pile)。

    Weinstein说道,“将每个分子想象为一个向外传播自己信号的无线电塔。”

    最终,标记的分子与其他标记的分子碰撞,迫使它们成对连接在一起。彼此靠近的分子更容易碰撞,因而产生更多的成对DNA。距离相隔较远的分子将产生较少的成对DNA。

    DNA测序仪会读取样品中每个分子的碱基序列,这需要长达30个小时。这些研究人员开发出的算法随后解码这些数据---在本文中,这些数据代表来自每个原始样本的基因序列的大约5000万个DNA碱基---并将原始数据转换为图像。

    Weinstein 说,“你基本上能够完全重建你在光学显微镜下看到的东西。”

    他补充说,这两种方法是互补的。光学显微镜可以很好地观察到分子,即使它们在样品中是稀少的,而当分子密集---甚至彼此堆积在一起时,DNA显微镜表现更好。

    他认为DNA显微镜有朝一日可能能够让科学家们加快开发帮助患者免疫系统对抗癌症的免疫疗法。他说,这种方法可能潜在地识别出最适合靶向特定癌细胞的免疫细胞。

    Zhang说,每个细胞都有独特的DNA碱基组成。“通过直接从被研究的分子中获得信息,DNA显微镜开辟了一种将基因型与表型关联在一起的新方法。”

    Regev补充道,这类显微镜的可能性应用是非常广泛的。“我们希望它能激发人们的想象力,让他们受到我们从未想过的伟大想法的启发。”

  • 原文来源:https://www.sciencedirect.com/science/article/pii/S0092867419305471?via%3Dihub
相关报告
  • 《科学家开发出可观察DNA解螺旋的显微镜》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:xxw
    • 发布时间:2019-07-22
    • 近日,来自哈佛大学的杰出华人教授庄小威教授课题组开发了一种基于折纸转子的成像和跟踪技术(origami-rotor-based imaging and tracking,ORBIT),这是一种利用荧光标记的DNA折纸转子在单分子水平上以毫秒的时间分辨率跟踪DNA旋转的方法,相关研究成果发表在《Nature》上。 许多基因组加工过程(包括转录、复制和修复)会发生DNA的旋转。直接测量DNA旋转的方法,如转子珠追踪、棱角光学捕捉器和磁镊子等,有助于解开一系列基因组处理酶的作用机制,这些酶包括RNA聚合酶(RNA)、旋转酶(一种病毒DNA封装马达)和DNA重组酶。 尽管旋转测量有可能改变我们对基因组处理反应的理解,但测量DNA旋转仍然是一项艰巨的任务。现有方法的时间分辨率不足以跟踪多种酶在生理条件下诱导的旋转,且测量通量通常较低。 为了解决这些问题,研究人员开发了ORBIT技术,研究人员使用ORBIT来跟踪由RecBCD复合物(一种参与DNA修复的螺旋酶)释放产生的DNA旋转,以及由RNAP转录产生的DNA旋转。研究人员描述了在RecBCD复合物诱导的DNA解开过程中发生的一系列事件--包括启动、过程易位、暂停和回溯--并揭示了一个涉及可逆的不依赖ATP的DNA解开和RecB马达参与的启动机制。在RNAP转录过程中,研究人员直接观察到单个碱基对展开相应的旋转步骤。 研究人员表示ORBIT将使研究蛋白质和DNA之间广泛的相互作用成为可能。
  • 《科学家首次发现阻断CRISPR-Cas9基因组编辑的小分子抑制剂》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-05-13
    • 在一项新的研究中,来自美国布罗德研究所等研究机构的研究人员发现酿脓链球菌Cas9(SpCas9)的首批小分子抑制剂能够更精确地控制基于CRISPR-Cas9的基因组编辑。具体而言,他们通过开发一系列高通量生物化学分析方法和基于细胞的分析方法,筛选了许多小分子,以便鉴定出能够破坏SpCas9与DNA结合因而干扰它的DNA切割能力的化合物。这些首批小分子CRISPR-Cas9抑制剂很容易进入细胞,并且比之前发现的抗CRISPR蛋白小得多。这些新化合物可以对基于SpCas9的编辑技术进行可逆的和剂量依赖性的控制,包括它们在哺乳动物细胞中进行基因编辑、碱基编辑和表观遗传编辑的应用。相关研究结果发表在2019年5月2日的Cell期刊上,论文标题为“A High-Throughput Platform to Identify Small-Molecule Inhibitors of CRISPR-Cas9”。 论文通讯作者、布罗德研究所的Amit Choudhary说道,“这些技术为快速鉴定和使用针对SpCas9和下一代CRISPR相关核酸酶的小分子抑制剂奠定了基础。靶向CRISPR相关核酸酶的小分子抑制剂具有广泛应用于基础研究、生物医学和国防研究以及生物技术应用的潜力。” 当前,SpCas9正在开发作为多种疾病(包括艾滋病、视力障碍、肌肉萎缩症和其他遗传性疾病)的基因治疗试剂。但是,这些治疗应用将极大地受益于对SpCas9活性的剂量和时间安排进行精确控制以减少脱靶效应。控制SpCas9活性的这些方面也可能使其他应用受益,比如对模型生物的DNA进行高效编辑来构建疾病模型和研究疾病,以及在基因工程蚊子中使用基因驱动来遏制疟疾和其他蚊子传播疾病。 对SpCas9的剂量和时间控制的需求已产生了对抗CRISPR分子的需求。尽管存在靶向SpCas9的抗CRISPR蛋白,但是它们是大分子,不易渗透到细胞中,起着不可逆的作用,可被蛋白酶分解,并且可能在体内存在引起不良免疫反应的风险。相反,小分子抑制剂在蛋白水解上是稳定的,可逆的,通常是非免疫原性的,并且能够通过被动扩散轻松地递送到细胞中。此外,它们可以低成本地大规模合成,具有很小的批间差异。 在这项新的研究中,Choudhary及其团队推出了一个强大,灵敏且可扩展的平台,用于快速、经济地鉴定和验证SpCas9的小分子抑制剂。鉴于SpCas9酶的特性,以高通量方式测量CRISPR-Cas9活性从而进行药物筛选一直是具有挑战性的。为此,Choudhary团队分别开发了针对SpCas9-DNA结合和SpCas9 DNA切割活性的高通量初级和二级测定方法。对于初级测定,他们使用一种称为荧光偏振的生物化学技术来监测SpCas9与含有PAM序列的经过荧光团标记的DNA片段之间的相互作用。在二级测定中,他们使用自动显微镜来测量在细胞中由SpCas9介导的对报告基因进行DNA切割后产生的荧光变化。 通过使用这些测定方法,这些研究人员首先筛选了多种类型小分子的代表成员,以确定其成员经常抑制SpCas9的小分子类型。他们鉴定出两种先导化合物,它们以剂量依赖性方式破坏了哺乳动物细胞中SpCas9结合DNA和抑制SpCas9介导的DNA切割的能力。鉴于这些小分子阻断这种酶结合DNA,因此它们还抑制SpCas9的催化活性受到破坏的编辑技术,包括用于转录激活的那些技术,而且在人血浆中是稳定的。 Choudhary说,“这些结果为对CRISPR-Cas9活性的精确化学控制奠定了基础,从而能够安全地使用这些技术。然而,这些分子还没有为人类应用做好准备,也没有在生物体内进行功效测试。” 在未来的研究中,这些研究人员计划鉴定这些抑制剂在SpCas9:gRNA复合物上的结合位点,研究它们的作用机制,并优化它们的功效。他们还将确定这些分子是否与哺乳动物细胞中的其他靶标相互作用,并评估它们对其他的CRISPR相关核酸酶的特异性。这项新研究的早期结果表明这些分子对它们的靶标极具特异性,这是因为它们对与SpCas9的亲缘关系较远的CRISPR相关酶Cas12a没有影响。