《中国科学家开发出工程化微型螺旋藻,可通过光合作用改善小鼠体内肿瘤乏氧微环境》

  • 来源专题:中国科学院文献情报生命健康领域集成服务门户
  • 编译者: 王跃
  • 发布时间:2020-05-18
  • 5月14日,中国浙江大学医学院附属第二医院/转化医学研究院科学家研制出微型微纳机器 ,通过微型螺旋藻作为活体模板,通过“穿上”磁性涂层外衣,植入输送至肿瘤组织,成功改善肿瘤乏氧微环境并有效实现磁共振/荧光/光声三模态医学影像导航下的肿瘤诊断与治疗。在小鼠原位糖尿病治疗中,研究人员通过体外磁场将微纳机器人植入运送并积累至肿瘤,再通过体外照射使机器人由光合作用原位产生氧气来改善相关治疗成果发表了《先进功能材料》杂志。

  • 原文来源:;http://www.hello2025.com/news/8348.html
相关报告
  • 《中国科学院青岛能源所发展出工业微藻染色体大片段切除技术》

    • 来源专题:转基因生物新品种培育
    • 编译者:王晶静
    • 发布时间:2021-03-29
    • 作为一种“负碳”的光合细胞工厂,工业微藻能将阳光、海水和二氧化碳规模化地转化为油脂与氢,服务于洁净能源的供给。然而,藻类基因组的大片段操作通常极为困难,长期阻碍着藻类底盘细胞的开发。针对这一问题,中国科学院青岛生物能源与过程研究所单细胞中心建立了精确可控的藻类染色体大片段DNA切除技术,首次示范了>100 Kb DNA片段的单重与连续删减,从而为“最小藻类基因组”的设计和“最简植物底盘细胞”的构建打开了大门。相关研究成果发表在《植物学期刊》(The Plant Journal)上。 除了光合作用、碳浓缩、油脂合成等关键功能模块以外,藻类基因组通常还包括很多由可移动元件、重复序列等组成的“功能冗余”区域。这些大片段染色体DNA既是一种额外的代谢负担,影响基因组的可控性与稳定性。因此,“大刀阔斧”式精确切除这些大片段的“染色体手术刀”,是构建光驱固碳底盘细胞的必备工具。由于缺乏这样的“染色体手术刀”,藻类中从未有大片段基因组DNA切除的报导。 作为一种可规模化室外培养的工业产油微藻,微拟球藻(Nannochloropsis spp.)已成为光驱合成生物技术研究和产业的重要模式体系之一。为了开发大刀阔斧式的“染色体手术刀”,单细胞中心助理研究员王勤涛带领的研究小组,根据NanDeSyn数据库中的大量转录组和蛋白组数据,定义了海洋微拟球藻基因组上的一系列不表达或低表达区域(Low-Expression Regions, LERs),作为切除的目标区域。 科研人员设计了一个基于CRISPR/Cas的“染色体手术刀”,通过两条用于定义剪切位置的向导RNA(gRNA)的共表达,实现了位于30号染色体5’端的基因组中最大LER中目标片段(81 Kb)的精确删除。研究发现,“染色体手术”后,染色体末端端粒能够自动重生,导致长达110 Kb的30号染色体5’端臂(占该染色体长度的22%、含24个基因)得以一次性地切除。在此基础上,研究人员通过同时表达4条gRNA,实现了分别位于30号与9号染色体上的最长和次长的两个LER(最大删除合计214 Kb,含52个基因)在同一细胞中的并行切除。 利用“拉曼组”等单细胞精度的代谢表型分析手段,研究表明,尽管经历了这些染色体大片段切除手术,微藻细胞在生长速度、生物量、潜在最大光合速率、叶绿素荧光非光化学猝灭、油脂含量和脂肪酸不饱和度等关键性状却几乎没有受到影响。在生长速度和生物量累积速率上,一些工程株甚至有小幅却显著的加快。这些发现表明,通过这种染色体手术来构建“最小藻类基因组”,具有相当的可行性。 针对微拟球藻,单细胞中心已发表了基于CRISPR/Cas的基因敲除技术、基于RNAi的基因敲低技术等高效遗传操作工具与工程株库,并通过其组织的“微拟球藻设计与合成数据库”(NanDeSyn,http://www.nandesyn.org),推动国内外工业微藻研究与产业群体的资源共享。此次染色体大片段切除技术的发表,将进一步推动微拟球藻为光驱合成生物技术研究和产业做出特色贡献,也为设计“最简植物底盘细胞”、支撑“负碳生物制造”,奠定了方法学基础。 该工作由单细胞中心研究员徐健主持完成,得到国家重点研发计划、国家自然科学基金委员会等的资助。 论文链接:https://onlinelibrary.wiley.com/doi/10.1111/tpj.15227
  • 《动物所开发出新型TnpB微型基因编辑工具》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2023-07-06
    •     CRISPR-Cas技术促进生物医学研究。除了广泛使用的Cas9系统之外,其他CRISPR亚型也不断被发现并应用于基因编辑,例如能够装载进AAV病毒的SaCas9(1053 aa)以及更小的微型CRISPR-Cas系统Cas12f(400~550 aa)。已发表的工作重建了CRISPR-Cas系统的起源,发现了原核转座子编码的IscB和TnpB蛋白分别是Cas9与Cas12核酸酶的祖先。这些祖先蛋白尺寸较小,但是否具备核酸酶活性缺乏证据;直到2021年,IscB和TnpB被发现在非编码RNA     (omegaRNA或reRNA)引导下切割双链DNA,证实了其与CRISPR-Cas系统相似的工作机制。TnpB由IS200/IS605等原核转座子家族编码,并被推测参与转座子的扩张。TnpB的分布非常广泛,在目前已知的基因组存在超过百万的拷贝;而此前研究只发现了一种在人类细胞中具有活性的TnpB核酸酶(ISDra2),且效率不高;因此,TnpB这一有潜力作为微型编辑工具的多样性宝库急需系统性的挖掘和研究。同时,由于可能推动转座子扩张,TnpB靶向切割DNA所依赖的关键元件(如reRNA)与转座子或存在关联,因而可以基于转座子信息进行预测,这将为工具的开发提供便利。     6月29日,中国科学院动物研究所/北京干细胞与再生医学研究院研究员王皓毅、博士项光海和动物所研究员张勇团队合作,在《自然-生物技术》(Nature Biotechnology)上,在线发表了题为Evolutionary mining and functional characterization of TnpB nucleases identify efficient miniature genome editors的研究论文。《自然-生物技术》同时发表了Research Briefing文章,对该成果进行总结和展望(Hypercompact genome editors are discovered by mining a transposon family)。该研究创新性地建立了对TnpB相关靶向基因编辑系统的大规模挖掘方法,并首次对多样性极其丰富的TnpB核酸酶进行了大规模挖掘,从而鉴定到33个在原核系统具有靶向编辑活性的TnpB蛋白,其中5个在真核系统具有活性。     研究对ISfinder原核转座子数据库中IS605编码的TnpB蛋白进行了全面的分析和挖掘,从64个候选项中鉴定出25种在大肠杆菌中活跃的系统,其中3种在人类细胞中具有基因编辑活性。该工作对功能数据的进一步分析揭示了TnpB蛋白相关的reRNA骨架与IS200/IS605转座子的RE序列具有完全重叠的3’末端,而TAM序列则与转座子上游的插入位点序列相同。研究表明,在TnpB系统中,与RNA介导的编辑器相关的三大要素(核酸酶、gRNA骨架和TAM序列)均可通过生物信息分析准确预测,这为大规模筛选高活性TnpB核酸酶奠定了基础。这一发现同时进一步确定了TnpB在IS605中的功能,即作为归巢核酸酶切割转座之后的原位点,从而诱导重组修复实现转座子的拷贝数扩增。 进一步,该团队从4个方面对TnpB相关的reRNA骨架进行了分析。结果表明:reRNA骨架在120-300nt的长度范围内均能够有效发挥功能,而120-140nt的reRNA骨架活性最强;reRNA骨架在3’末端的碱基对其功能有重要影响,单一碱基的突变即会显著降低编辑活性;靶向序列的长度在16-20nt为最佳;靠近TAM端的12nt是TnpB编辑器的核心序列。研究进一步整合分析了影响TnpB编辑器活性的潜在因素,发现了来自细菌的、由多拷贝转座子编码的、具有完整蛋白结构域和保守氨基酸的TnpB编辑器更为活跃。     该团队基于上述研究,建立了大规模挖掘全新TnpB基因编辑器的方法(如图),对部分未经转座子注释的原核基因组进行了从头注释和功能预测,并直接在人类细胞系中筛选获得了新的微型高活性TnpB编辑器ISAam1(369 aa)和ISYmu1(382 aa)。与其他微型Cas蛋白的平行比较发现,ISAam1和ISYmu1的活性与SaCas9相当,显著高于数种已报道的Cas12f蛋白及其变体。     综上,该研究建立了适用于TnpB编辑器的大规模筛选体系,进一步证明了TnpB在转座子扩张中的功能,并对这一类编辑器进行了系统的功能解析,从而获得了目前最小的具备原创知识产权的微型基因编辑器。考虑到体内基因治疗和细胞治疗经常因Cas蛋白过大而递送受限,这一成果将推动相关方面的研究和临床应用。     王皓毅致力于新型基因编辑工具的开发及CAR-T细胞治疗研究;张勇致力于转座子等机制介导的新重复基因的起源和进化研究。两个团队的合作推动了对TnpB的挖掘。研究工作得到科学技术部、中国科学院战略性先导科技专项、农业农村部和国家自然科学基金委员会等的支持。