《用于治疗、生物成像和生物传感的二维MoS2‐基纳米材料》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2018-11-27
  • 二硫化钼(MoS2)是一种典型的二维层状过渡金属二硫化物,由于其独特的结构、物理化学、光学和生物特性,近年来受到了广泛的关注。虽然MoS2主要应用于传统工业,如干润滑剂、插补剂和锂离子电池中的负极材料,但其二维和0D的形式已经导致了在传感、催化、治疗和成像方面的不同应用。本文系统综述了MoS2在生物医学领域的研究进展,重点介绍了其在不同生物医学领域的应用。本文对MoS2的基本结构和性质进行了概述,并详细描述了目前合成的不同形态,即纳米片、纳米管和量子点,以及合成策略。本文还对基于MoS2‐的纳米复合材料的生物医学应用进行了详细和分类的描述,如药物传递、基因传递、光疗、联合治疗、生物成像、热敏学和生物传感等不同的治疗和诊断模式。最后,简要评述了目前面临的挑战和限制,并讨论了整体改进MoS2基纳米复合材料作为一种潜在纳米药物的前景。

    ——文章发布于2018年11月22日

相关报告
  • 《用于替代细菌治疗的纳米材料》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2017-11-22
    • 尽管有一系列令人信服的抗生素,细菌感染,特别是那些由nosocomial病原体产生的细菌感染,仍然是全球发病率和死亡率的主要因素。他们针对的是严重患病、住院和免疫功能受损的病人,他们的免疫系统不正常,容易受到感染。抗菌素治疗的选择主要是经验性的,不缺乏毒性、超敏性、致畸性和/或诱变性。多重耐药细菌的出现进一步加剧了临床困境,因为它直接影响到公共健康,因为目前抗生素的效力下降。此外,对生物膜相关感染的关注也在不断升级,这些感染对目前可用的抗菌剂armory难以治疗,几乎没有治疗方案。因此,有必要开发替代的抗菌药物。在过去的十年中,全球使用纳米药物作为对抗高抗菌素耐药性的创新工具出现了大幅增长。金属和金属氧化物纳米颗粒(NPs)的抗菌活性得到了广泛的报道。这些微生物要么通过NPs的杀菌作用被消灭,比如释放游离金属离子,最终导致细胞膜损伤、DNA的相互作用或自由基生成,或者通过微生物的静态效应,再加上宿主免疫系统增强的杀伤作用。本文综述了在医院感染中耐多药耐药的程度、宿主免疫系统的细菌逃避、细菌利用的机制以及利用基于金属的纳米材料来克服这些挑战。讨论了传统和生物金属NPs对抗菌活性的不同作用。此外,还讨论了使用聚合物基纳米材料和纳米复合材料,单独或用配体、抗体或抗生素进行功能化,作为治疗严重细菌感染的替代抗菌剂。结合金属NPs的组合疗法,作为现有抗生素的辅助手段,可以帮助抑制细菌抵抗和医院威胁的日益增加的威胁。 ——文章发布于2017年11月10
  • 《宁波材料所在二维纳米防护薄膜材料方面取得进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-03-30
    • 石墨烯具有大的比表面积、高的化学惰性以及优异的阻隔性,被认为是已知最薄的防护材料,采用化学气相沉积(CVD)法制备的石墨烯薄膜可直接用于金属的腐蚀防护,逐渐成为制备石墨烯防护薄膜最主要的方法。但石墨烯薄膜在制备过程不可避免会引入空位、晶界等结构缺陷,将其长时间暴露在空气中,腐蚀介质容易通过这些缺陷与基底金属发生反应,且高导电的石墨烯薄膜将促进界面处的电化学反应进而加速基底金属的腐蚀。   近期,中国科学院宁波材料技术与工程研究所海洋新材料与应用技术重点实验室研究员王立平团队利用CVD技术在多晶铜衬底上成功制备了一系列的氮掺杂石墨烯薄膜,通过调节NH3的气流量获得不同氮浓度的氮掺杂石墨烯薄膜。同时,研究发现氮掺入石墨烯晶格网络中会造成薄膜体系的导电率相比于原始石墨烯下降,在大气长效暴露试验条件下,低导电的氮掺杂石墨烯薄膜可抑制电子在腐蚀界面的传输,降低铜和氮掺杂石墨烯界面处的电化学腐蚀速率,有效延缓腐蚀区域的扩散,表现出更佳的长效腐蚀防护性能(图1),但该方法仍不能根除薄膜在生长过程中形成的结构缺陷,以及所造成的表面不均匀的腐蚀点。相关结果已经发表在Journal of Materials Chemistry A(2018, 6, 24136-24148)上,并作为期刊的Inside back cover被亮点报道。   另一方面,六方氮化硼(h-BN)纳米片作为一种石墨烯类似物,也具有很好的抗渗透性。王立平团队通过CVD法在多晶铜衬底上生长出不同层数的h-BN薄膜,由于h-BN自身的绝缘特性,无论是单层或是多层h-BN薄膜,将其包覆在铜衬底表面都表现出优异的大气长效防护性能。在高温加热条件下(200℃),单层h-BN薄膜包覆铜箔的氧化主要发生在薄膜晶界和缺陷处,而多层h-BN的氧化主要集中在薄膜的褶皱区;相比于单层h-BN薄膜,多层h-BN薄膜能够有效阻碍氧气的横向扩散,显著提高了基底铜的抗氧化性能(图2)。相关结果发表在ACS Applied Materials & Interfaces(2017, 9, 27152-27165)上。   以上研究工作得到中国科学院前沿科学重点研究项目(QYZDY-SSW-JSC009)、国家自然科学基金(41506098)、青岛海洋科学与技术国家实验室开放基金(QNLM2016ORP0409)等的资助。