《用于替代细菌治疗的纳米材料》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2017-11-22
  • 尽管有一系列令人信服的抗生素,细菌感染,特别是那些由nosocomial病原体产生的细菌感染,仍然是全球发病率和死亡率的主要因素。他们针对的是严重患病、住院和免疫功能受损的病人,他们的免疫系统不正常,容易受到感染。抗菌素治疗的选择主要是经验性的,不缺乏毒性、超敏性、致畸性和/或诱变性。多重耐药细菌的出现进一步加剧了临床困境,因为它直接影响到公共健康,因为目前抗生素的效力下降。此外,对生物膜相关感染的关注也在不断升级,这些感染对目前可用的抗菌剂armory难以治疗,几乎没有治疗方案。因此,有必要开发替代的抗菌药物。在过去的十年中,全球使用纳米药物作为对抗高抗菌素耐药性的创新工具出现了大幅增长。金属和金属氧化物纳米颗粒(NPs)的抗菌活性得到了广泛的报道。这些微生物要么通过NPs的杀菌作用被消灭,比如释放游离金属离子,最终导致细胞膜损伤、DNA的相互作用或自由基生成,或者通过微生物的静态效应,再加上宿主免疫系统增强的杀伤作用。本文综述了在医院感染中耐多药耐药的程度、宿主免疫系统的细菌逃避、细菌利用的机制以及利用基于金属的纳米材料来克服这些挑战。讨论了传统和生物金属NPs对抗菌活性的不同作用。此外,还讨论了使用聚合物基纳米材料和纳米复合材料,单独或用配体、抗体或抗生素进行功能化,作为治疗严重细菌感染的替代抗菌剂。结合金属NPs的组合疗法,作为现有抗生素的辅助手段,可以帮助抑制细菌抵抗和医院威胁的日益增加的威胁。

    ——文章发布于2017年11月10

相关报告
  • 《新技术可以提高纳米药物的治疗效率》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-07-29
    • 莫斯科物理与技术研究所的研究人员和他们的同事从Shemyakin-Ovchinnikov有机化学研究所和普罗霍罗夫普通物理研究所俄罗斯科学院已经开发出一种突破性技术要解决的关键问题,避免引入小说几十年来药物进入临床实践。 这种新溶液可以延长任何纳米药物的血液循环,提高其治疗效率。俄罗斯研究人员的研究发表在《自然生物医学工程》杂志上,并在该杂志的新闻和观点部分刊登了专题报道。 19世纪末以来,医学化学的发展导致了传统医学向化学公式严格定义的药物的转变。尽管已有150年的历史,这种模式仍然是绝大多数现代药物的基础。它们的活性分子倾向于执行一个简单的功能:激活或停用某个受体。 然而,自20世纪70年代以来,许多实验室一直在研究能够同时实现多种复杂功能的新一代药物。例如,通过一系列生化线索来识别癌细胞,向医生指示肿瘤的位置,然后通过毒素和加热来摧毁所有的恶性细胞。 由于一个分子不能完成所有这些功能,一个更大的超分子结构,或纳米颗粒,必须使用。 然而,尽管纳米材料的种类繁多,迄今为止,只有最简单的具有高度特异性功能的纳米材料进入临床实践。使用治疗性纳米颗粒的主要问题与我们免疫系统惊人的效率有关。千百年来,进化完善了人体消除纳米大小外来实体的能力,从病毒到烟雾颗粒。 在合理的剂量下,大多数人工纳米颗粒能在几分钟甚至几秒钟内被免疫系统从血液中清除。这意味着,无论药物多么复杂,大部分剂量甚至都没有机会接触目标,而是会影响健康组织,通常是以有毒的方式。 由MIPT纳米生物技术实验室负责人Maxim Nikitin领导的俄罗斯研究团队在他们最近的论文中提出了一项突破性的通用技术,可以显著延长血液循环,提高各种纳米制剂的治疗效率,而不需要对其进行修饰。 这项技术利用了免疫系统不断从血液中清除旧的、“过期的”红细胞的事实——人体每天约有1%的红细胞。“我们假设,如果我们稍微加强这个自然过程,我们可以欺骗免疫系统。当它开始忙于清除红血球时,人们对清除治疗性纳米颗粒的关注较少。重要的是,我们想以最温和的方式转移免疫系统的注意力,最理想的是通过人体固有的机制,而不是通过人工物质。” 研究小组发现了一种优雅的解决方案,即向小鼠注射红血球特异性抗体。这些分子构成了哺乳动物免疫系统的基础。他们识别出需要从身体中去除的实体,在这里是红细胞。 这一假设被证明是正确的,而且小剂量的抗体——每公斤体重1.25毫克——被证明非常有效,能将纳米颗粒的血液循环延长几十倍。这种权衡是非常温和的,小鼠的红细胞水平仅下降了5%,比贫血的水平少了两倍。 研究人员发现,他们的方法被称为单核吞噬细胞系统的“细胞封锁”,适用于所有的纳米颗粒。它延长了微小的量子点测量循环时间只有8纳米,中等规模的100纳米粒子,和大型微米大小的,以及最先进的nanoagents批准使用在人类身上:一种“隐形”脂质体,伪装自己下一个高度惰性聚乙二醇涂层来躲避免疫系统。 与此同时,无论是小剂量还是在脓毒症的情况下,细胞阻滞都不会损害人体抵御血液中细菌(天然微粒)的能力。 这项新技术使纳米颗粒的广泛应用成为可能。在一组小鼠实验中,研究人员在所谓的纳米制剂主动输送到细胞方面取得了显著进展。 它包括配备特殊分子的纳米颗粒来识别靶细胞。一个例子就是使用识别T细胞的CD4受体的抗体。给这些细胞的药物输送将有助于治疗自身免疫性疾病和其他疾病。 在小鼠体内诱导细胞阻滞使纳米颗粒的循环时间从通常的3-5分钟增加到1小时以上。在没有细胞阻滞的情况下,清除速度过快,无法与靶细胞结合,但在细胞阻滞后,药物表现出异常高的靶向效率,与体外达到的水平相当。 该实验凸显了这项新技术的巨大潜力,不仅可以增强纳米制剂的性能,还可以使之前在体内完全低效的纳米制剂成为可能。 团队继续演示他们的癌症治疗技术的适用性,与cytoblockade使23倍更有效的磁纳米粒子的引导交付肿瘤(图1)。这种交付技术利用磁场来指导,集中注意力,并保留磁代理在肿瘤减少系统性毒性。这种传递只适用于纳米颗粒,而不适用于分子。 该研究报告了一种有效的治疗黑色素瘤的方法,即使用载磁铁矿的脂质体和化疗药物阿霉素,如果不使用红细胞抗体则完全无效。研究表明,改善磁传递对五种不同性质的肿瘤,包括黑色素瘤和乳腺癌。 他说:“我们观察到,对于我们所针对的每种癌症,纳米剂的输送都得到了改善。特别重要的是,这种方法在小鼠体内的人类肿瘤细胞上起作用,”研究合著者伊万·泽莱普金评论道,他是RAS生物有机化学研究所和MIPT的初级研究员。 值得注意的是,这项新技术使一种已获批准用于人体的商业脂质体制剂的治疗得到改进。这意味着细胞阻滞不仅打开了新的治疗机会,而且加强了现有的治疗机会。 作者指出,纳米颗粒性能的增强与血液循环时间的延长密切相关。这种相关性可以通过研究小组开发的一种高灵敏度的磁粒子定量方法来建立。它能够以一种无创的方式检测血液中颗粒消除的动力学——也就是说,不抽血。 这种方法不仅能让我们实时测量血液中的颗粒含量。它使整个研究中,因为这将不可能测量如此大量的纳米粒子动能概要文件使用任何其他现有方法在一个合理的时间内,”切赫尼基丁说,他是这项研究的合作者之一Biophotonics实验室主管和RAS的普通物理研究所。 这项新开发的技术在转化为临床应用方面尤其有前景,因为抗d抗体与rhd阳性的红细胞结合,长期以来被批准用于治疗免疫血小板减少症和预防恒河猴疾病。因此,利用已获批准的药物,对人类新技术的评估可以在不久的将来开始。 毫无疑问,纳米医学与现有的抗d或改进的下一代抗红细胞抗体的联合作用应该在严格的临床试验中进行检验。然而,我们对这项技术及其在癌症等需要靶向药物治疗的严重疾病中的应用感到非常乐观。” “既然这项历时七年的复杂研究已经发表,我们将尽一切努力将其转化为临床实践。因此,我们正在寻找有兴趣加入这个团队的合作者和积极的同事。” 自cytoblockade技术是通用的兼容nanoagents,不需要修改,它有可能成为比PEGylation大大更有效率,这是发达国家在70年代以来产生了数十亿产业“长期循环”的药物,与数十名临床批准的药物。 这组作者认为,这项拟议的技术可能为最先进的纳米制剂在体内的使用打开大门,主要关注的是功能性而不是隐形特性。 根据材料科学中最先进的理念制备的新型生物医学纳米材料,可以立即被引入体内的生命科学研究,然后迅速完善到临床应用。
  • 《用于治疗、生物成像和生物传感的二维MoS2‐基纳米材料》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2018-11-27
    • 二硫化钼(MoS2)是一种典型的二维层状过渡金属二硫化物,由于其独特的结构、物理化学、光学和生物特性,近年来受到了广泛的关注。虽然MoS2主要应用于传统工业,如干润滑剂、插补剂和锂离子电池中的负极材料,但其二维和0D的形式已经导致了在传感、催化、治疗和成像方面的不同应用。本文系统综述了MoS2在生物医学领域的研究进展,重点介绍了其在不同生物医学领域的应用。本文对MoS2的基本结构和性质进行了概述,并详细描述了目前合成的不同形态,即纳米片、纳米管和量子点,以及合成策略。本文还对基于MoS2‐的纳米复合材料的生物医学应用进行了详细和分类的描述,如药物传递、基因传递、光疗、联合治疗、生物成像、热敏学和生物传感等不同的治疗和诊断模式。最后,简要评述了目前面临的挑战和限制,并讨论了整体改进MoS2基纳米复合材料作为一种潜在纳米药物的前景。 ——文章发布于2018年11月22日