《宁波材料所在二维纳米防护薄膜材料方面取得进展》

  • 来源专题:中国科学院亮点监测
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2019-03-30
  • 石墨烯具有大的比表面积、高的化学惰性以及优异的阻隔性,被认为是已知最薄的防护材料,采用化学气相沉积(CVD)法制备的石墨烯薄膜可直接用于金属的腐蚀防护,逐渐成为制备石墨烯防护薄膜最主要的方法。但石墨烯薄膜在制备过程不可避免会引入空位、晶界等结构缺陷,将其长时间暴露在空气中,腐蚀介质容易通过这些缺陷与基底金属发生反应,且高导电的石墨烯薄膜将促进界面处的电化学反应进而加速基底金属的腐蚀。

      近期,中国科学院宁波材料技术与工程研究所海洋新材料与应用技术重点实验室研究员王立平团队利用CVD技术在多晶铜衬底上成功制备了一系列的氮掺杂石墨烯薄膜,通过调节NH3的气流量获得不同氮浓度的氮掺杂石墨烯薄膜。同时,研究发现氮掺入石墨烯晶格网络中会造成薄膜体系的导电率相比于原始石墨烯下降,在大气长效暴露试验条件下,低导电的氮掺杂石墨烯薄膜可抑制电子在腐蚀界面的传输,降低铜和氮掺杂石墨烯界面处的电化学腐蚀速率,有效延缓腐蚀区域的扩散,表现出更佳的长效腐蚀防护性能(图1),但该方法仍不能根除薄膜在生长过程中形成的结构缺陷,以及所造成的表面不均匀的腐蚀点。相关结果已经发表在Journal of Materials Chemistry A(2018, 6, 24136-24148)上,并作为期刊的Inside back cover被亮点报道。

      另一方面,六方氮化硼(h-BN)纳米片作为一种石墨烯类似物,也具有很好的抗渗透性。王立平团队通过CVD法在多晶铜衬底上生长出不同层数的h-BN薄膜,由于h-BN自身的绝缘特性,无论是单层或是多层h-BN薄膜,将其包覆在铜衬底表面都表现出优异的大气长效防护性能。在高温加热条件下(200℃),单层h-BN薄膜包覆铜箔的氧化主要发生在薄膜晶界和缺陷处,而多层h-BN的氧化主要集中在薄膜的褶皱区;相比于单层h-BN薄膜,多层h-BN薄膜能够有效阻碍氧气的横向扩散,显著提高了基底铜的抗氧化性能(图2)。相关结果发表在ACS Applied Materials & Interfaces(2017, 9, 27152-27165)上。

      以上研究工作得到中国科学院前沿科学重点研究项目(QYZDY-SSW-JSC009)、国家自然科学基金(41506098)、青岛海洋科学与技术国家实验室开放基金(QNLM2016ORP0409)等的资助。

相关报告
  • 《宁波材料所在人工二维铁电金属研究方面取得进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:liuzh
    • 发布时间:2018-06-20
    •   最近,中国科学院宁波材料技术与工程研究所、中国科学院磁性材料与器件重点实验室研究员曹彦伟(第一作者和通讯作者)与其合作者在此方向实现了突破。他与来自美国罗格斯大学、布鲁克海文国家实验室、加州大学伯克利分校、宾州州立大学、阿贡国家实验室、伯克利国家实验室等单位的研究人员合作,利用原子级精度的激光分子束外延技术制备了高质量的室温二维铁电金属BaTiO3/SrTiO3/LaTiO3(如图),实现了界面二维电子气的铁电极化,以及电荷、轨道、铁电极化的周期性调控。该工作不但实现了人工室温二维铁电金属的制备,更为设计具有铁电、铁磁和超导三相共存的二维量子材料提供了思路,有望推动新型量子器件的应用。该研究工作于4月18日以Artificial two-dimensional polar metal at room temperature 为题发表在《自然-通讯》(Nature Communications,DOI:10.1038/s41467-018-03964-9)上,并被选为编辑推荐文章,作为亮点工作报道(Editors’ highlights)
  • 《宁波材料所在太阳能界面光热转化及多介质纯化方面取得进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-03-30
    • 传统的分离与纯化技术是一个高能耗、高成本的过程,在当前能源危机和环境压力不断增加的情况下,急需革新技术以突破能耗障碍。太阳能是一种清洁、可再生能源,高效开发和利用太阳能得到全世界的重视,也是我国可持续发展战略的重要内容。太阳能光热蒸发技术因其可持续、低/无能耗、零CO2排放等特点,近年来成为分离领域的研究热点,在海水淡化、污水净化等方面展现出巨大应用潜力。其中光热转化材料是该技术的核心,主要包括等离激元材料、碳纳米材料和半导体材料三类材料,然而制备复杂、成本高、稳定性低等是当前限制光热材料推广和阻碍光热技术发展的主要原因,因此研发高转化效率、低成本、高稳定性和普适性的光热转化材料显得尤为重要和迫切。   近日,中国科学院宁波材料技术与工程研究所刘富研究员团队在前期光热材料多介质纯化应用研究的基础上(J. Mater. Chem. A 2019, 7, 586-593),发展了一种低成本的全生物质光热蒸馏器,并实现了从多种含水介质中提取纯水(如图1)。基于水稻秸秆生物质,通过限氧裂解方法得到多孔碳基光吸收材料,并与细菌纤维素复合制得高稳定性、高机械强度的光热蒸发膜,太阳光吸收达89.4%。同时利用秸秆生物质的空腔结构作为汲水通道和支撑体来构筑界面蒸发系统,水稻秸秆独特的毛细内腔和壁面多级微纳结构赋予该原生通道优异的无障碍供水能力。由光热蒸发膜和汲水通道组装成的全生物质光热蒸馏器,用于模拟海水淡化装置进行连续室外运行,在晴天和多云天气下日产水量分别为6.4~7.9kgm-2和4.6~5.6kgm-2,且直接达到饮用标准(盐离子去除率保持在99.9%以上)。除了适用于海水淡化,该生物质光热蒸馏器还可从滩涂、湿地、沼泽等含水介质中稳定提取纯净水,展现出良好的普适性。相关工作发表在ACS Appl. Mater. Interfaces. 2019, DOI: 10.1021/acsami.9b00291,该工作得到阿卜杜拉国王科技大学Peng Wang教授的合作支持。   除了水溶液,研究团队针对有机溶剂体系的分离与纯化,进一步研发了耐溶剂光热材料,首次系统性研究了太阳能光热蒸发技术在有机溶剂纯化中的应用。普鲁士蓝(PB)是一类典型的Fe2+-C≡N-Fe3+面心立方晶配位聚合物,具有优异的水溶液和有机溶剂稳定性,晶体内Fe2+和Fe3+可发生电荷转移赋予PB特定的光热效应,然而结晶度和晶体空位是影响PB光热转化效率的关键因素。课题组基于单一铁源,通过慢速结晶的配位聚合,合成低空位率、高结晶度的普鲁士蓝(PB)纳米立方晶体(如图2),并通过原位生长将其负载在同样耐溶剂的棉纤维(CF)基体上,载量可控且结合稳定。制备的PB@CF复合纤维材料综合了光热转化和溶剂自汲取功能,光吸收达到93.7%;成功应用于水和一系列有机溶剂(介电常数2.38~37.78)的光热纯化,在保持99.9%去除率的前提下,蒸发通量从丙酮的29.2 Lm-2h-1到N-甲基吡咯烷酮的0.73Lm-2h-1不等(一个太阳下),与溶剂蒸发焓成显著负相关。对部分有机溶剂的纯化效率与传统压力驱动的耐有机溶剂纳滤膜相当。此外对高极性溶剂(DMAC)呈现出稳定的光热蒸发性能,对DMAC溶剂纯化运行3个月仍可保持稳定蒸发速率。该研究结果有望应用于化工和医药领域的溶剂体系分子筛分、溶剂回收、催化剂循环利用等,相关工作发表在J. Mater. Chem. A 2019, DOI: 10.1039/C9TA00798A。   以上工作得到国家自然科学基金委面上项目(51603209),国家自然科学基金委与香港研究资助局联合项目(5161101025、N-HKU706/16)以及宁波市科技局(2017C110034)等项目支持。