《Cell:科学家有望利用维生素D来治疗糖尿病》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-05-12
  • 据美国CDC数据显示,如今在美国有2700多万2型糖尿病患者,随着人口老龄化的增加及过重和肥胖人群比例的不断增加,2型糖尿病患者的数量还会一直增加。近日一项刊登在国际著名杂志Cell上的一篇研究报告中,来自索尔克研究所的研究人员通过研究开发了一种潜在的方法,通过保护机体胰腺中的β细胞来有效治疗糖尿病,胰腺中的β细胞能够产生、储存并且释放胰岛素,当其功能失调时就无法制造胰岛素来控制机体的血糖水平,从而就会有害机体健康,甚至会诱发个体死亡。

    文章中,研究人员利用维生素D实现了他们治疗糖尿病的目标,他们对细胞模型和小鼠模型进行研究发现,维生素D能够有效治疗机体中损伤的β细胞,同时本文研究还提出了关于基因调节的新见解,或能用来开发治疗诸如癌症等其它疾病的新型疗法。利用来自胚胎干细胞中的β细胞,研究人员鉴别出了一种名为iBRD9的化合物,该化合物能够增强维生素D受体的激活,当其与维生素D结合时就能改善β细胞的存活率。

    研究人员进行了一项筛选试验来寻找能改善培养皿中β细胞存活率的特殊化合物,随后他们在糖尿病小鼠模型中检测了化合物iBRD9和结合维生素D的作用效果,结果表明,新型疗法组合能够将动物模型体内的葡萄糖水平调节至正常水平。研究者Zong Wei博士表示,开始研究时我们试图阐明维生素D在β细胞中所扮演的关键角色,对糖尿病患者的流行病学调查数据显示,血液中高水平的维生素D或与低风险的糖尿病直接相关,但我们并不清楚其背后所涉及的分子机制,我们很难单独使用维生素来保护β细胞免受伤害,如今我们已经想到方法如何利用上述关联来进行相关研究了。

    维生素D和糖尿病风险之间的关联背后所涉及的分子机制实际上与基因转录有关,即基因如何转录成为蛋白质,当将化合物iBRD9与维生素D相结合后就能特殊基因的表达水平要比疾病细胞中更多一些;研究者Michael Downes说道,激活维生素D受体的表达或能诱发基因的抗炎性功能,从而帮助细胞在压力状况下存活,而利用在实验室中开发的特殊筛选系统,我们就能鉴别出关键的关节来促进维生素D通路的超级激活。

    本文研究发现将会对科学家们后期的研究产生深远的影响,研究者所鉴别出的特殊机制或能转化成为临床中开发新型疗法的药物靶点。最后研究者Ruth Yu补充道,本文研究中我们对糖尿病进行了研究,因为我们发现了一种关键的受体能帮助我们开发出任何疗法来增强维生素D的效应。尽管研究人员当前使用的新型化合物似乎不会引发小鼠模型出现任何副作用,但在该疗法进入临床之前研究人员还需要进行更为深入的研究。

  • 原文来源:https://www.cell.com/cell/fulltext/S0092-8674(18)30506-3
相关报告
  • 《科学家有望开发出早期诊断1型糖尿病的新技术》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-07-23
    • 近日,来自皇家墨尔本理工学院等机构的科学家们通过研究开发出了一种进行1型糖尿病早期检测新技术,这种技术能够准确预测儿童是否有患慢性疾病的风险。目前并没有1型糖尿病的早期诊断技术,当人们被诊断为1型糖尿病时,其机体胰腺中70%产生胰岛素的细胞都已经被破坏了。 于是研究人员就希望能够开发出一种新型检测试剂盒来作为新生儿1型糖尿病的标准诊断工具,对新生儿进行有效检测,并且促进糖尿病患儿的治疗,有效延缓其疾病的进展。这项研究中,研究人员将在芯片上的实验技术应用于产胰岛素的β细胞的研究中。研究者Vipul Bansal说道,我们所开发的检测试剂盒非常廉价且有效,而且使用也很方便,其并不需要专业的技术知识或昂贵的分析。 在疾病进展之前有效发现病症或许能够有效改善每年确诊为1型糖尿病的2400名澳大利亚人的健康。1型糖尿病是一种终身性的自身免疫性疾病,其在全球影响着大约54.2万人儿童的健康,而且近年来被诊断为1型糖尿病的成年人的数量越来越多。 研究人员所开发的新型技术能利用微型芯片和传感器来检测机体血液中的标志物,而这些标志物能够有效识别患者机体早期β细胞的缺失。β细胞中存在于胰腺中,其是机体制造胰岛素的唯一途径,胰岛素是一种糖调节激素,而1型糖尿病患者机体无法制造胰岛素。来自悉尼大学的研究人员此前通过研究发现,血液中大约有20种生物标志物能够准确预测机体β细胞的健康。 这项研究中,研究人员旨在开发出一种即时监测设备来检测上述的生物标志物,并且快速得出结果。研究者Ravi Shukla表示,他们目前已经开发出了一种包被特殊纳米颗粒的传感器,这种传感器能够有效地检测选择性生物标志物的存在,如果机体血液中存在某种特定分子时,其还能发生颜色变化。 下一步研究者希望能够扩展这种传感器的能力,将其浓缩到一个微流控芯片上,而芯片的大小相当于一张邮票。这种微流体芯片包含微型通道和泵,其能准确控制液体的流动,由于血液在微流体系统中很难被处理,于是研究人员率先开发出了一种新技术来避免对样品进行特殊处理。研究者Arnan Mitchell教授说道,最后我们将为卫生专业技术人员开发出一种简单且可靠的工具,我们所构建出的设备原型能够对患者的血液进行分析并给出评分,来指示其患1型糖尿病的风险。 研究人员的最终目的就是减缓或抑制人们1型糖尿病的发展,这种新型检测技术还能明显加速研究人员开发治疗或抑制1型糖尿病开端或进展的新型疗法。研究者表示,该设备的各个部件都能正常工作,而他们所面临的挑战就是讲传感器和芯片整合到一个易于使用的设备中。后期他们将会进行更为深入的研究来实现这一目的。
  • 《EMBO Mol Med:科学家利用基因疗法成功治愈2型糖尿病和肥胖小鼠 未来有望应用于人体》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-07-11
    • 近日,来自巴塞罗那自治大学的科学家们通过研究,利用基因疗法成功治愈了小鼠的肥胖和2型糖尿病,相关研究刊登于国际杂志EMBO Molecular Medicine上。研究者表示,我们利用了一种名为腺相关病毒载体(Adeno-associated viral Vector,AAV)来携带FGF21(成纤维细胞生长因子21)基因的疗法(AAV-FGF21疗法)进行研究,单次使用这种载体就能操纵肝脏、脂肪组织和骨骼肌,使其持续产生FGF21蛋白,这种蛋白是由机体多个器官自然分泌的一种特殊激素,其能在很多组织中发挥作用,维护正常的能量代谢,通过基因疗法来诱导动物机体产生FGF21蛋白就能够帮助减肥,并且降低机体对胰岛素的耐受性,从而治疗肥胖和2型糖尿病。 目前研究人员已经在两种不同的肥胖小鼠模型中成功进行了试验,即饮食或遗传突变所诱导的肥胖,此外,研究者还观察到,当给予健康小鼠应用这种特殊的基因疗法,就能促进小鼠健康老龄化,并且抑制年龄相关的特种增长和胰岛素耐受性的产生。利用AAV-FGF21疗法治疗后,小鼠体重就会下降,同时其脂肪积累的水平和脂肪组织的炎症水平也会降低,同时肝脏中的脂肪含量、炎症及纤维化也会被逆转,而且机体胰岛素的敏感性会增加。 当研究者对三种不同的组织(肝脏、脂肪组织和骨骼肌)进行遗传操作使其产生FGF21蛋白后也能够再现上述结果,这或许就提高了这种新型疗法的灵活性,其不仅能够选择最合适的组织来进行作用,而且还能抑制疾病并发症的发生。当一种组织产生FGF21蛋白时,其会将这种蛋白分泌到血液中,最后会分散到全身。 研究者Claudia Jambrina强调了本文研究结果的重要性,由于如今全球肥胖和2型糖尿病的流行率越来越高,同时肥胖还会增加人们因多种疾病死亡的风险,比如心血管疾病、免疫性疾病、高血压、关节炎、神经变性疾病和某些类型的癌症等。这项研究中,研究人员首次发现,利用AAV-FGF21基因疗法能够长期逆转机体的肥胖状态和对胰岛素的耐受性,未来或有望应用于人体临床试验中,相关研究结果也表明,AAV-FGF21疗法是一种安全且有效的疗法。 同时研究人员还指出,这种基因疗法还能帮助机体有效抵御长时间高热量饮食所诱发的肝脏中肿瘤产生的风险。当用于常规治疗中,FGF21蛋白的寿命较短,因为目前制药工业中开发出了FGF21的类似物,而且这些类似物也已经开始进入临床试验了。然而科学家们需要定期给予FGF21类似物来调节临床效益,但同时也会产生一些与外源性蛋白相关的免疫性问题的风险;研究人员所开发的基因疗法载体就能够诱导小鼠多年产生与人类机体所产生的相同的FGF21激素,而且在使用FGF21后并不会给机体带来任何副作用。 下一步在进行患者临床试验之前研究人员还需要进行大规模的动物研究来检测这种基因疗法的安全性,AAV所介导的基因疗法目前已经在欧洲和美国获批用来治疗多种类型的基因,而且研究人员在利用AAV介导的肝脏和骨骼肌基因转移上也具有广泛的临床经验,因此未来研究人员有望利用基于FGF21的基因疗法来治疗2型糖尿病、肥胖症及其相关的疾病。