《电解水材料设计研究取得进展》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2022-02-24
  • 近日,中国科学院大连化学物理研究所理论催化创新特区研究组研究员肖建平团队与日本理化学研究所教授中村龙平团队,在电解水材料设计研究中取得新进展,制备了尖晶石构型的Co2MnO4材料,实现了超高效安培级电流密度电解水活性,并实现酸性环境中超长的电解稳定性。

    制备高活性且在酸性环境中具备超长的电解稳定性非贵金属电解水(oxygen evolution reaction,OER)催化剂是清洁能源利用领域中的研发重点。本研究中,中村龙平团队在金属氧化物Co3O4中掺入Mn元素,制备出尖晶石构型的Co2MnO4材料,实现了高效且在酸性环境中高稳定性的电解水过程;肖建平团队运用“反应相图+微观动力学模拟”的研究方法,首次建立了OER过程的反常截顶活性火山型曲线,证明了该材料在各种构型环境下皆可体现高效电解水活性。同时,肖建平团队提出“双通道溶解模型”,进一步解释了其在酸性环境中体现超长的电解稳定性的主要原因。

    肖建平团队基于第一性原理密度泛函理论计算,从分子/原子的角度探讨了OER催化过程,其中,建立催化活性趋势来剖析不同材料或特定材料的不同构型(表面、活性位点等)的催化活性是理论研究的最新范式。理论催化活性趋势的建立往往基于表面重要中间物种之间的相互线性关联,由此可以将催化活性通过描述符的方式表达,从而建立活性趋势。

    本工作中,在针对尖晶石金属氧化物表面的OER过程建立的二维“反应相图”中,肖建平团队发现了其活性趋势呈现出反常截顶的活性火山型曲线,即随着中间物质吸附强度的改变,材料活性保持不变。基于实验中发现的Co2MnO4材料的各种局域构型(包括Co/Mn的流失、缺陷、富集等),肖建平团队进一步发现其所有构型皆处于反常截顶的活性火山型曲线的顶点平台上。这揭示了该材料能够体现超高电催化活性的原因,解释了其在部分表面溶解重构的过程中仍能维持高电催化活性的根本原因。不同材料体现的理论活性与实验的拟合也进一步证明了该观点。此外,在理论活性研究中,肖建平团队通过电荷外插值法,计算了OER过程中每个电化学过程在不同工作电压下的反应能垒,通过微观动力学模拟得到理论速率,发现其与实验结果拟合,证实了理论计算结果可靠性。

    另外,肖建平团队通过建立双通道溶解模型进一步探究材料在特定电催化环境下的稳定性,即同时研究金属位点和晶格氧在特定工作电压下的溶解且考虑其先后顺序。研究表明,Co2MnO4材料的溶解过程包括金属(Co/Mn)的溶解,H2O的去质子化并结合晶格O形成OOH*,以及氧空位的形成。该过程整体是热力学放热过程,而晶格氧溶解的基元过程体现出较大的热力学势垒,是该过程的速控步骤。因此,晶格氧的溶解被用作理论稳定性描述符,用于探索材料的稳定性,其与实验结果的拟合证明了该研究的可靠性。此外,科研团队对bader电荷分析发现,在掺入Mn后,Mn-O中存在更多的电荷转移,体现出更强的Mn-O键能,证明了晶格O稳定性的提升。该成果在今后的理论催化剂设计中,可以预测活性趋势,并可准确把握催化稳定性。

    相关研究成果以Enhancing the Stability of Cobalt Spinel Oxide towards Sustainable Oxygen Evolution in Acid为题,发表在《自然-催化》(Nature Catalysis)上。研究工作得到国家重点研发计划、中国科学院洁净能源创新研究院合作基金、国家自然基金、中国科学院战略性先导科技专项(B类)“功能纳米系统的精准构筑原理与测量”等的支持。

  • 原文来源:http://www.nengyuanjie.net/
相关报告
  • 《宁波材料所在电磁屏蔽材料设计与制备方面取得研究进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-07-12
    • 随着现代电子工业的快速发展,各种高集成和高功率无线通信系统和电子器件数量急剧增加,导致电磁干扰和电磁污染问题日益突出,不仅在通信领域中对信号的产生、传播和接收造成了极大的影响,而且给人类社会的生产与生活,尤其是人类身体健康带来了不容忽视的危害。联合国人类环境会议早在1969年就将电磁辐射列为继水、大气、噪声污染之后的第四大公害。电磁屏蔽材料是一类能够通过吸收和反射等方式来衰减电磁波能量传播以有效抑制电磁干扰和污染的功能材料。中国科学院宁波材料技术与工程研究所高分子事业部郑文革研究员团队一直致力于高效电磁屏蔽材料的开发,前期已经在电磁屏蔽材料的制备以及性能的研究方面取得一系列进展。近期,该团队又在新型电磁屏蔽材料的设计和制备方面取得进展。   (1)户外全天候电子设备如信号站、户外电磁装置等,电磁屏蔽材料除了需满足“高效、轻质、低反射”的要求外,对其它性能如防腐、自清洁性能也提出了新的期望。以电磁屏蔽材料为基础构建超疏水表面,不仅能有效防止空气中酸性介质渗入,提高抗腐蚀能力,还可以赋予其自清洁功能。因此,系统、科学地对电磁屏蔽材料进行结构设计,开展具有超疏水表面新型多功能电磁屏蔽材料的研究,对相关电子设备的安全长效使用具有重要的现实意义。研究人员以具有低表面能的聚偏氟乙烯(PVDF)作为基体,选择石墨烯和多壁纳米碳管作为复合导电填料,并通过水蒸气诱导相分离方法在具有粗糙表面结构的聚酯基无纺布上面制备得到了具有超疏水表面多孔聚合物复合材料(如图1)。石墨烯和多壁纳米碳管可以在PVDF基体中形成有效的导电网络,具有粗糙表面结构的聚酯基无纺布以及墨烯和多壁纳米碳管、球晶结构微孔结构的存在可以在PVDF表面共同构造多级粗糙结构。所制备的聚合物复合材料具有优异的屏蔽效能(~28.5dB),以及超疏水特性(接触角高达155°左右);同时该聚合物复合材料在长时间的紫外照射下任具有很好的性能稳定性。相关结果发表于国际期刊Composites Science and Technology, 2018, 158, 86-93。   (2)生物质是一种环境友好的可持续和可再生资源,某些生物质通过碳化可以获得具有理想电磁屏蔽性能的多孔碳材料,但直接使用原始生物质作为碳化前体可能会限制最终材料的结构多样性。实际上,生物质材料可以加工成具有不同结构的各种生物基衍生物产品,并且它们可以适用于构建具有高性能的新型电磁屏蔽材料。研究人员简单地通过木浆织物的碳化来制备高导电宏观碳网格(MCG)材料(如图2),所得到的样品在厚度为~0.3mm左右不仅表现出优异的屏蔽效能(~20.3-45.5dB)(与其碳化温度呈正相关或与其网格尺寸呈负相关),而且由于网格的存在,具有透光率在~15%-56%之间半透明特性。此外,双层MCG材料可以在恒定厚度下通过微小平移运动改变网格的交错度来方便地调节材料的屏蔽性能,对可调电磁波衰减器件的设计具有参考意义。相关结果发表于国际期刊Carbon, 2018, 139, 271-278。   上述工作得到了国家自然科学基金(51603218、51473181、51573202)的大力资助。
  • 《等离子体所在电解水催化剂研究方面取得新进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-05-30
    • 近期,等离子体所应用等离子体研究室王奇课题组在氢能研究方面取得新进展,相关工作以“Exfoliation of bimetallic (Ni,Co) carbonate hydroxide nanowires by Ar plasma for enhanced oxygen evolution”为题作为封面文章发表在国际期刊Chemical Communications(Chem.Commun.,2020,56,872)上。   氢能因其来源广、无污染等优点而成为二十一世纪最有前景的能源之一。电解水被认为是一种最有潜力的制氢技术。然而阳极析氧反应(OER)和阴极析氢反应(HER)较高的过电位,阻碍了水的高效分解。二维层状双氢氧化物(LDHs)作为OER电催化剂之一,由于其可调的化学组分和独特的电子结构,制备方法简单可靠,有望成为大规模工业化应用的OER电催化剂。NiCo-LDHs被公认为是一种很好的OER电催化剂, 但是由于自身结构及导电性的限制,其活性位点暴露并不充分,因而催化活性不能得到最大程度的利用。   课题组创新性地采用Ar等离子体,将一维NiCo-LDHs纳米线剥离成二维纳米薄片,形成三维树枝状结构,不仅增加NiCo-LDHs的电化学活性表面积,而且暴露出更高的Ni3+和Co3+的活性位点,从而有效提高了NiCo-LDHs的析氧性能。得到的NiCo-LDHs表现出较低的起始电位(1.48 V vs. RHE)和较长的稳定性(6000 循环,电流密度保持率为82%)。该研究工作为等离子体处理二维材料提供了新方法,为开发廉价高性能的氧析出反应催化剂提供了新思路。   该工作得到了国家自然科学基金(11575253)、安徽省重点研发计划(1704a0902017)、安徽省相关人才计划(1608085J03)、中国科学院光伏与节能材料重点实验室(PECL2018QN005)的资助。