《我国学者在低成本电解水析氢催化领域取得重要进展》

  • 来源专题:能源情报网监测服务平台
  • 编译者: 郭楷模
  • 发布时间:2025-02-25
  • 在国家自然科学基金项目(批准号:52071083、52401292、22172003、12074016、12274009)等项目资助下,复旦大学孙大林、方方等人联合北京工业大学卢岳、北京大学周继寒和天津大学刘辉等人在低成本电解水析氢催化剂开发方面取得重要进展。相关成果以“电还原衍生的畸变纳米孪晶激活纯铜电催化析氢性能(Electroreduction-Driven Distorted Nanotwins Activate Pure Cu for Efficient Hydrogen Evolution)”为题发表在《自然·材料》(Nature Materials)期刊上。论文链接:https://www.nature.com/articles/s41563-024-02098-2。

      电解水析氢具有制氢纯度高、与可再生能源适配性好等优点,是一种高效清洁的制氢方式。在电解析氢过程中,催化剂起着至关重要的作用。它能够降低电解反应的活化能,从而提高析氢反应速率和效率。一般认为,Pt和Ir等铂系金属是最有效的析氢反应催化剂,但其高成本和低储量严重限制了其广泛应用。与铂系金属相比,铜(Cu)具有低成本、高储量和优异的导电性,是一种潜在的理想析氢催化剂。然而Cu对析氢反应的氢中间体吸附过弱导致其析氢催化活性极差,一般被用作集流体而不是催化剂。理论计算表明,引入拉伸应变和降低配位数可以有效地增强Cu对氢中间体的吸附作用。因此,如何通过局域结构调控在降低配位数的同时引入强且稳定的拉伸应变是激活纯Cu析氢催化活性的核心难点。

      近日,研究团队受到电化学充放氢反应中大反应驱动力的启发,创新地提出了激光烧蚀和电化学还原耦合的两步法合成策略,首次制备出富含畸变纳米孪晶的纯Cu析氢催化剂(DNTs-Cu)。该方法首先利用激光液相烧蚀的非平衡条件制备出富含晶界的Cu2O多晶纳米颗粒,然后再利用电还原将Cu2O还原成Cu。在电还原过程中,电化学反应的强驱动力使得细小的Cu2O晶粒被快速还原,从而导致晶界诱发的晶格失配得以保留,在还原后的纳米Cu中形成了大量畸变的多重孪晶结构。局域结构分析表明,DNTs-Cu中畸变的多重孪晶结构互锁,形成了强且稳定的拉伸应变,并在表面形成了大量原子台阶,使得Cu-Cu键长由铜箔的2.158 ?增长至2.255 ?,配位数由铜箔的12降低至9.5。DNTs-Cu的强拉伸应变以及表面原子台阶所产生的低配位提升了Cu催化位点的d带中心,显著地增强了Cu对氢中间体的吸附。在酸性电解液中,最优性能的DNTs-Cu在10 mA cm?2电流密度下的过电位仅为61 mV,与商用Pt/C催化剂相当;当电流密度超过100 mA cm?2时,其催化活性全面超越商用Pt/C。得益于多重孪晶互锁的稳定结构,DNTs-Cu表现出十分优异的催化稳定性。在500 mA cm?2高电流密度下连续运行125小时,催化性能仅衰减2%。与已报道的以Cu作为活性位点的Cu基析氢催化剂材料相比,DNTs-Cu具有更优异的催化活性和稳定性。

      该研究表明,与其他传统的金属材料制备方法相比,电化学方法可以产生更强的驱动力来产生强且稳定的晶格应变,为金属功能材料的开发与制备提供了新合成思路。同时,通过改变原子配位数和晶格应变来调节反应中间体的吸附能进而激活非活性金属催化性能,为高效电催化剂的设计提供了新范式。

  • 原文来源:https://www.nsfc.gov.cn/publish/portal0/tab448/info94432.htm
相关报告
  • 《电解水有了低成本高活性双功能催化剂》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-06-05
    • 中国科学院合肥物质科学研究院固体物理研究所李越研究员课题组在分级异质结构Ni3Se4@NiFe水滑石纳米片的制备及其全解水研究方面取得新进展,相关研究结果日前发表在《纳米视界》上。该研究工作为开发低成本、高活性的双功能电解水催化剂提供了一种有效的设计思路。 电解水规模化应用的关键是如何降低阳极析氧反应(OER)和阴极析氢反应(HER)的过电位,实现在低电位下的大电流产氢,进而降低电能消耗与制氢成本。研究表明Ru、Ir、Pt等贵金属及其氧化物具有最优异的析氢催化性能,但其价格昂贵、资源匮乏限制了这些材料的广泛应用。因此,发展廉价高效非贵金属电解水催化剂具有十分重要的科学意义和实用价值。 现有催化剂通常只对一种反应(OER或HER)具有较高的催化活性,因此电解水反应需要两种不同类型催化剂。这使得电解水设备更加复杂,运行成本增加。如果将不同功能的催化剂组装成一种分级结构的异质结纳米材料,构筑一种双功能全解水催化剂,可以有效解决上述问题。 基于此,固体物理研究所的研究人员通过简单的两步水热法,将具有析氢性能的Ni3Se4纳米片和析氧性能的NiFe组装成具有分级结构的异质全解水催化剂。由于稳定的分级结构以及催化剂之间的电子相互作用,这种纳米催化剂具有优异的全解水活性,全解水电流密度为10mA/cm2时,所需电压仅为1.54V,并且在电流密度为10mA/cm2时持续工作100小时,没有明显的衰减,证明其稳定性非常好。
  • 《上海高研院质子交换膜电解水制氢研究取得重要进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-03-30
    • 发展氢能的“初心”是基于可再生能源的电解水绿色制氢,但高的贵金属催化剂用量是质子交换膜电解水制氢成本居高不下的主要原因之一。中国科学院上海高研院杨辉团队与美国凯斯西储大学戴黎明课题组合作在氢能源研究领域取得重要进展,发展了碳缺陷驱动的铂原子团 自发沉积新方法,实现了电解水制氢阴极Pt用量大幅降低,研究成果以“Carbon-Defect Driven Electroless Deposition of Pt Atomic Clusters for Highly Efficient Hydrogen Evolution”为题发表在J. Am. Chem. Soc., 2020, 142, 12, 5594-5601,论文的第一作者是上海高研院程庆庆博士,杨辉和戴黎明教授为通讯联系人。 图1. 超小Pt-AC/DG制备流程、物理表征、DFT计算、电化学HER活性以及质子交换膜水电解器件稳态极化曲线和稳定性测试 该工作中研究人员利用新颖的、碳缺陷驱动自发沉积新方法,构筑由缺陷石墨烯负载高分散、超小(< 1nm)且稳定的Pt原子级团簇(Pt-AC)水电解析氢(HER)电催化剂(图1)。理论研究表明:与完美六元环碳位点相比,缺陷碳位点具有更低的表面功函数、更高的还原能力,从而在缺陷位点处优先触发Pt离子自发沉积。碳缺陷与Pt之间更强的结合能力有效限制了自发还原Pt原子的迁移,确保超小Pt-AC的形成和稳定。上海光源同步辐射进一步验证了Pt-AC与碳缺陷之间较强的电子作用,赋予其有别于传统Pt纳米颗粒独特的电子结构。Pt-AC呈现了优异的HER电催化性能,与传统Pt/C催化剂相比,其质量比活性、Pt原子利用效率和稳定性均得到大幅提升。组装的质子交换膜水电解器件在实现安培级产氢电流的同时,阴极Pt用量降低到约1/10,且展现出优异的稳定性。本项目的进展将对氢能领域的发展和实现氢能经济具有重要的科学和实践意义。 本研究得到了国家重点研发计划、国家自然科学基金、中国科学院战略性先导科技专项等资助。