《Mol Cell:研究揭示链霉菌的生命周期调控特征》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2019-12-05
  • 链霉菌是我们的主要抗生素来源。在其复杂的生长生命周期中(从营养生长到孢子形成的过程中)产生了我们需要的抗生素。

    John Innes中心的Mark Buttner教授实验室先前的研究表明,信号分子c-di-GMP与基因活性的主要抑制剂BldD结合,能够控制这些土壤细菌的发育。

    c-di-GMP是一类核苷酸第二信使,它是细菌中广泛分布的细胞内信号,负责调节关键的生命过程,包括迁移,毒力和生物膜形成。

    在一项新研究中,使用委内瑞斯链霉菌进行的实验表明,c-di-GMP还能够控制生殖菌丝向孢子的分化。它通过介导链霉菌中主要的孢子形成σ因子WhiG和抗σ因子RsiG之间的相互作用来实现。

    σ因子是启动转录所需的蛋白质,研究表明,RsiG和c-di-GMP结合并抑制了σWhiG活性,从而阻止了其靶基因的表达以及繁殖菌丝向孢子的转变。

    该研究的第一作者Kelley Gallagher博士说:“由于这一发现,现在很清楚,c-di-GMP信号分别通过BldD和σ因子WhiG来控制链霉菌生命周期中向生殖气生菌丝的分化及其向孢子链的分化。在两种情况下,c-di-GMP都起着‘制动’作用。”

  • 原文来源:http://news.bioon.com/article/6747443.html
相关报告
  • 《Cell | 人类50年生命周期多组织蛋白质组图谱揭示衰老轨迹与分子标志物》

    • 来源专题:战略生物资源
    • 编译者:朱晓琳
    • 发布时间:2025-07-29
    • 发表机构:中国科学院动物研究所,国家生物信息中心 作    者:刘光慧,张维绮,曲静(通讯作者)     衰老,作为一项涉及多器官、跨越多重生物学层级的机体系统性退行性演变,其深层的分子机制至今仍是生命科学领域悬而未决的核心命题。当前科学共识指出,蛋白质稳态(Proteostasis)的失衡是衰老进程中标志性的分子特征之一。人类基因组编码的超两万种蛋白质,作为细胞结构的基石,其构成的动态网络精密调控着生理稳态,是一系列生命活动的核心执行者。因此,系统绘制跨越生命周期的蛋白质组动态全景图谱,深入解析器官及系统尺度下蛋白质网络的重编程规律,对于精准识别衰老的核心驱动因素并确立干预靶标具有重要意义。     基于前沿人工智能算法,研究团队成功构建了覆盖13种(涵盖心脏、主动脉、肺、肌肉等13种器官)人类组织的特异性“蛋白质组衰老时钟”,首次从蛋白质时空维度,系统解析了器官衰老的显著异质性及其动态架构。深度分析揭示:30岁左右为衰老轨迹的初始分水岭——肾上腺组织率先呈现衰老特征,提示内分泌稳态失衡或为早期驱动力;同期主动脉亦出现稳态偏移,进一步印证了它作为“衰老哨兵”的先锋定位。45-55岁被确认为衰老进程的里程碑式转折点,绝大多数器官蛋白质组在此阶段经历“分子级联风暴”,差异表达蛋白呈爆发性激增,标志其成为多器官系统性衰老的关键生物学转变窗口。值得注意的是,主动脉蛋白质组在此过程中的重塑最为剧烈,其分泌组与循环血浆蛋白质组动态谱呈现强共演变特征,提示衰老相关分泌因子(senokine)可能是介导衰老信号系统性传播的枢纽机制。     为验证“血管衰老中枢”假说,团队锁定关键衰老相关分泌因子展开功能解析。代表性范例促衰蛋白GAS6在衰老主动脉组织及循环系统中呈现跨尺度显著富集;体外功能研究证实,GAS6可直接驱动人类血管内皮细胞与平滑肌细胞衰老表型;动物模型进一步揭示,外源系统性给予GAS6显著加速中年小鼠运动功能衰退及多器官衰老进程。类似地,GPNMB、COMP、HTRA1、IGFBP7等衰老相关分泌因子亦被证实可直接诱导血管细胞衰老,其中外源注射GPNMB,模拟衰老血液GPNMB的累积,可重现系统性加速衰老表型。这些多维度、跨物种的因果性证据在机制层面确证了“衰老扩散”理论的核心原则——即局部衰老组织通过特异性分泌因子,驱动远端器官衰老级联,从而将衰老研究的范式从聚焦传统的“细胞内分子机制”拓展至“器官间通讯网络”的系统维度。     综上,该研究整合蛋白质组大数据、人工智能建模与多维度功能验证,首次提出‘蛋白质稳态失衡-血管衰老枢纽’模型,为系统性衰老机制提供新范式。下一步,团队将依托生命周期蛋白衰老图谱,深挖关键驱动因子,推进无创衰老标志物检测与器官时钟临床应用,以精准重塑蛋白稳态网络,延长健康寿命,构建下一代衰老干预的理论基础。 发表日期:2025-7-25
  • 《动物研究所合作揭示调控灵长类器官衰老的表观转录组机制》

    • 来源专题:生物育种
    • 编译者:姜丽华
    • 发布时间:2023-04-13
    • m6A是目前已知的真核细胞mRNA上最为常见的一类化学修饰,它的建立、读取和擦除分别受到相应甲基化酶(writer)、结合蛋白(reader)以及去甲基化酶(eraser)的动态可逆调控。研究表明,m6A能够通过调节mRNA的剪接、出核、稳定性以及翻译等生命周期活动,参与调控机体的诸多生理或病理进程,包括胚胎发育、肿瘤以及神经退行性疾病的发生等。然而,在生理性衰老过程中,m6A对于器官稳态维持的调控作用以及关键分子机制均有待阐明。   2023年4月6日,中国科学院动物研究所刘光慧研究组、曲静研究组联合中国科学院北京基因组研究所慈维敏研究组以及张维绮研究组在Nature Aging杂志在线发表了题为“m6A epitranscriptomic regulation of tissue homeostasis during primate aging”的研究论文。该研究利用非人灵长类动物(食蟹猴)生理性衰老的多器官研究模型,同时结合基于基因编辑和人类干细胞定向分化的研究体系,通过系统绘制器官和细胞衰老过程中RNA m6A修饰的动态图谱,解析了RNA甲基化修饰及相关基因表达稳态的变化规律,并深入阐释了METTL3–m6A–NPNT通路调控骨骼肌衰老的新型机制。   在这项工作中,研究人员通过对年轻和年老食蟹猴的肝脏、骨骼肌和心脏进行系统的组织学分析发现,脂肪蓄积增加、炎症因子上调以及核纤层蛋白Lamin B1下调是三种组织衰老的共性特征;此外还发现骨骼肌中的凋亡细胞增加、肌纤维萎缩、以及心脏中的心肌纤维肥大等组织特异的衰老相关退行性变化。随后,通过联合分析三种组织的m6A表观修饰图谱及相应的转录组图谱,研究人员揭示了m6A修饰和基因表达稳态之间的相关性以及不同组织共性和特性的衰老调控规律。相较于肝脏和心脏,研究人员在骨骼肌中特异性地检测到了整体m6A修饰的减少以及核心甲基化酶METTL3表达水平的降低。进而通过CRIPSR/Cas9技术,研究人员建立了由人类胚胎干细胞衍生的METTL3敲除的肌管细胞,发现METTL3的缺失导致肌管细胞发生萎缩、凋亡以及加速衰老等退行性变化,与衰老骨骼肌的表型一致。进一步的机制研究揭示了NPNT作为METTL3的下游效应因子发挥维持骨骼肌细胞稳态的作用,而慢病毒载体介导的METTL3或NPNT回补表达均能一定程度上延缓人类肌管细胞的衰老。最后,通过METTL3酶活抑制剂处理以及METTL3酶活突变体过表达等相关实验,研究人员证实了METTL3通过m6A催化活性依赖的方式促进NPNT的表达以及维持肌管细胞的稳态,并且发现m6A结合蛋白IGF2BP1可以结合并稳定受到m6A修饰的NPNT mRNA。   综上所述,该研究系统揭示了三种重要的灵长类器官/组织在生理性衰老过程中的动态m6A修饰变化及其与基因表达稳态的关系,并且深入阐明了METTL3–m6A–NPNT通路维持人类骨骼肌稳态的作用和机制。研究深化了人们对m6A参与维持人类器官功能稳态的认识以及对衰老的表观转录调控机理的理解,为研究骨骼肌衰老提供了一个有效整合灵长类器官模型和人类干细胞衍生物体系的系统性平台,同时也为延缓骨骼肌衰老或治疗与年龄相关的骨骼肌退行疾病(如肌少症)提供了潜在的分子靶标和干预策略。   该工作由中国科学院动物研究所、中国科学院北京基因组研究所(国家生物信息中心)、中国科学院干细胞与再生医学创新研究院、首都医科大学宣武医院等多家机构合作完成。中国科学院动物研究所刘光慧研究员、中国科学院北京基因组研究所慈维敏研究员和张维绮研究员、以及中国科学院动物研究所曲静研究员为文章的共同通讯作者。中国科学院动物研究所特别研究助理武泽明、中国科学院北京基因组研究所博士研究生路明明、中国科学院动物研究所硕士研究生刘迪、中国科学院北京基因组研究所史悦副研究员、任捷研究员以及首都医科大学宣武医院王思研究员为文章的并列第一作者。该研究同时得到了中国科学院北京基因组研究所杨运桂研究员、肖景发研究员以及中国科学院动物研究所魏妥研究员的合作与支持,并获得了国家科技部、国家自然科学基金委和中国科学院等项目的大力资助。   原文链接:https://doi.org/10.1038/s43587-023-00393-2