《动物研究所合作揭示调控灵长类器官衰老的表观转录组机制》

  • 来源专题:生物育种
  • 编译者: 姜丽华
  • 发布时间:2023-04-13
  • m6A是目前已知的真核细胞mRNA上最为常见的一类化学修饰,它的建立、读取和擦除分别受到相应甲基化酶(writer)、结合蛋白(reader)以及去甲基化酶(eraser)的动态可逆调控。研究表明,m6A能够通过调节mRNA的剪接、出核、稳定性以及翻译等生命周期活动,参与调控机体的诸多生理或病理进程,包括胚胎发育、肿瘤以及神经退行性疾病的发生等。然而,在生理性衰老过程中,m6A对于器官稳态维持的调控作用以及关键分子机制均有待阐明。

      2023年4月6日,中国科学院动物研究所刘光慧研究组、曲静研究组联合中国科学院北京基因组研究所慈维敏研究组以及张维绮研究组在Nature Aging杂志在线发表了题为“m6A epitranscriptomic regulation of tissue homeostasis during primate aging”的研究论文。该研究利用非人灵长类动物(食蟹猴)生理性衰老的多器官研究模型,同时结合基于基因编辑和人类干细胞定向分化的研究体系,通过系统绘制器官和细胞衰老过程中RNA m6A修饰的动态图谱,解析了RNA甲基化修饰及相关基因表达稳态的变化规律,并深入阐释了METTL3–m6A–NPNT通路调控骨骼肌衰老的新型机制。

      在这项工作中,研究人员通过对年轻和年老食蟹猴的肝脏、骨骼肌和心脏进行系统的组织学分析发现,脂肪蓄积增加、炎症因子上调以及核纤层蛋白Lamin B1下调是三种组织衰老的共性特征;此外还发现骨骼肌中的凋亡细胞增加、肌纤维萎缩、以及心脏中的心肌纤维肥大等组织特异的衰老相关退行性变化。随后,通过联合分析三种组织的m6A表观修饰图谱及相应的转录组图谱,研究人员揭示了m6A修饰和基因表达稳态之间的相关性以及不同组织共性和特性的衰老调控规律。相较于肝脏和心脏,研究人员在骨骼肌中特异性地检测到了整体m6A修饰的减少以及核心甲基化酶METTL3表达水平的降低。进而通过CRIPSR/Cas9技术,研究人员建立了由人类胚胎干细胞衍生的METTL3敲除的肌管细胞,发现METTL3的缺失导致肌管细胞发生萎缩、凋亡以及加速衰老等退行性变化,与衰老骨骼肌的表型一致。进一步的机制研究揭示了NPNT作为METTL3的下游效应因子发挥维持骨骼肌细胞稳态的作用,而慢病毒载体介导的METTL3或NPNT回补表达均能一定程度上延缓人类肌管细胞的衰老。最后,通过METTL3酶活抑制剂处理以及METTL3酶活突变体过表达等相关实验,研究人员证实了METTL3通过m6A催化活性依赖的方式促进NPNT的表达以及维持肌管细胞的稳态,并且发现m6A结合蛋白IGF2BP1可以结合并稳定受到m6A修饰的NPNT mRNA。

      综上所述,该研究系统揭示了三种重要的灵长类器官/组织在生理性衰老过程中的动态m6A修饰变化及其与基因表达稳态的关系,并且深入阐明了METTL3–m6A–NPNT通路维持人类骨骼肌稳态的作用和机制。研究深化了人们对m6A参与维持人类器官功能稳态的认识以及对衰老的表观转录调控机理的理解,为研究骨骼肌衰老提供了一个有效整合灵长类器官模型和人类干细胞衍生物体系的系统性平台,同时也为延缓骨骼肌衰老或治疗与年龄相关的骨骼肌退行疾病(如肌少症)提供了潜在的分子靶标和干预策略。

      该工作由中国科学院动物研究所、中国科学院北京基因组研究所(国家生物信息中心)、中国科学院干细胞与再生医学创新研究院、首都医科大学宣武医院等多家机构合作完成。中国科学院动物研究所刘光慧研究员、中国科学院北京基因组研究所慈维敏研究员和张维绮研究员、以及中国科学院动物研究所曲静研究员为文章的共同通讯作者。中国科学院动物研究所特别研究助理武泽明、中国科学院北京基因组研究所博士研究生路明明、中国科学院动物研究所硕士研究生刘迪、中国科学院北京基因组研究所史悦副研究员、任捷研究员以及首都医科大学宣武医院王思研究员为文章的并列第一作者。该研究同时得到了中国科学院北京基因组研究所杨运桂研究员、肖景发研究员以及中国科学院动物研究所魏妥研究员的合作与支持,并获得了国家科技部、国家自然科学基金委和中国科学院等项目的大力资助。

      原文链接:https://doi.org/10.1038/s43587-023-00393-2

  • 原文来源:http://ioz.cas.cn/gb2018/xwdt/kyjz/202304/t20230408_6728431.html
相关报告
  • 《Cell | 空间转录组景观揭示了衰老的标志--免疫球蛋白相关衰老》

    • 来源专题:战略生物资源
    • 编译者:朱晓琳
    • 发布时间:2024-11-05
    •   2024年11月4日,中国科学院动物研究所的刘光慧课题组与华大生命科学研究院的顾颖团队、中国科学院北京基因组研究所的张维绮课题组以及中国科学院动物研究所的曲静课题组合作,在Cell杂志在线发表了题为 Spatial Transcriptomic Landscape Unveils Immunoglobin-associated Senescence as a Hallmark of Aging 的研究论文。在这项研究中,研究人员首次构建了高精度的泛器官衰老空间导航图(命名为Gerontological Geography, 简称GG),揭示了组织结构失序和细胞身份丢失是多器官衰老的共性特征。研究不仅精确定位了多个器官中衰老的核心区域,还发现免疫球蛋白的积累是衰老的一个关键特征和驱动因素。这一发现为深入理解衰老的机制、预警和干预提供了新的科学基础。研究提出的免疫球蛋白相关衰老表型(Immunoglobin-associated Senescence Phenotype,简称IASP)不仅拓展了衰老科学的研究疆域,还为延缓衰老及防治相关疾病开辟了新路径。
  • 《动物所揭示蚜虫翅型分化的调控机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-03-28
    • 昆虫是最早演化出翅并具备飞行能力的动物类群。许多昆虫具有翅的非遗传多型现象。其中,蚜虫的翅二型现象是昆虫可变翅型最极端的模式,即完整发育的翅和完全降解的翅,且翅型转变完全依赖跨代信号调控。由于其祖先和邻近种均为有翅,鲜有关于无翅蚜在演化动力、性状决定和调控机制的研究。   蚜虫翅型分化受到种群密度、温度光周、寄主营养、天敌胁迫等环境因素影响。母代蚜虫感知外部环境信号后,将其转换为分子信号,通过跨代传递到子代胚胎,决定子代翅原基组织细胞命运。中国科学院动物研究所通过比较密度依赖的有翅蚜和无翅蚜一龄阶段翅原基组织形态,发现有翅蚜和无翅蚜在出生24 h均有翅原基组织,但无翅蚜翅原基组织在出生后的30-36 h发生明显退化(图1)。透射电镜和免疫荧光实验发现翅原基组织降解过程中发生了明显的细胞自噬。研究通过药理学实验证明激活自噬可以降低有翅蚜比例,而抑制自噬可以升高有翅蚜比例。翅两型蚜虫转录组分析发现雷帕霉素靶蛋白(Target of rapamycin,TOR)信号通路中的关键转录因子REPTOR2(repress by TOR 2)在翅原基降解关键期参与调控。基因组学分析发现REPTOR2的形成是由于经历了一次基因复制事件(gene duplication),常染色体A1上的母基因REPTOR1通过复制,在X染色体上形成了REPTOR2,其在蚜虫胸节高表达,能够特异性地激活翅原基组织自噬并降低有翅蚜比例。进一步,研究通过双干扰实验发现TOR主要通过抑制REPTOR2的转录调控翅原基组织自噬和有翅蚜比例(图2)。该研究解析了蚜虫翅原基命运决定的调控途径,揭示了关键转录因子调控翅原基发育可塑性的分子机制,为剖析昆虫翅多型现象的分子演化奠定了重要基础。   3月22日,相关研究成果发表在eLife上。研究工作得到国家重点研发计划、中国科学院战略性先导科技专项(B类)先导培育项目、国家自然科学基金等的支持。