《美国德克萨斯大学奥斯汀分校研究人员创造世界最小的原子存储单元》

  • 来源专题:后摩尔
  • 编译者: shenxiang
  • 发布时间:2020-11-30
  • 在高密度信息存储、计算和可重构系统的开发中,非易失性电阻开关(又称memristor效应)已成为高密度信息存储、计算和可重构系统发展中的一个重要概念。在过去的十年里,非挥发性电阻开关材料如金属氧化物和固体电解质取得了重大进展。长期以来,人们一直认为漏电流会妨碍对纳米薄绝缘层现象的观察。然而,最近在过渡金属二卤共生体和六方氮化硼二维单层中发现了非挥发性电阻开关,这一发现驳斥了以上观点,并由于尺寸缩放的好处而增加了一种新的材料维度。

    美国德克萨斯大学奥斯汀分校研究人员以单层MoS2为模型系统,阐明了原子片中开关机制的起源。原子成像和光谱分析表明,金属取代硫空位会导致电阻的非挥发性变化,而缺陷结构和电子状态的计算研究证实了这一点。这些发现提供了对非易失性开关的原子论理解,并为精确缺陷工程开辟了一个新的方向,从单个缺陷开始,朝着在超高密度存储器、神经形态计算和射频通信系统中实现最小的记忆阻制器。

    研究人员创造了有史以来最小的记忆存储设备之一,横截面面积只有一平方纳米,厚度只有一个原子。这种被称为 “原子电阻”的装置是通过单个原子的运动来工作的,这将为具有超高信息密度的更小记忆系统铺平了道路。如果扩大规模,它可以用来制造每平方厘米约25TB的存储容量的芯片,这比目前的闪存所能提供的容量高100倍左右,但它运行所需的能量更少。

    这种新设备属于一类新兴的电子器件,称为记忆电阻(Memristors),它使用电阻开关存储数据。从本质上讲,当某种材料暴露在一定的电压下时,其电阻可以切换,变得更强或更弱。这种现象可用于将数据写入设备,随后可测量其相对电阻以“读取”存储的数据。在这种情况下,这种电阻开关是通过单原子移入和移出纳米级孔来处理的,这将改变材料的导电性。研究人员表示这一概念也应该适用于一系列类似的材料。

    图1 材料表征

    该研究成果11月9日发表在《Nature Nanotechnology》, 题目:“Observation of single-defect memristor in an MoS2 atomic sheet”。

    原文链接:https://www.nature.com/articles/s41565-020-00789-w

  • 原文来源:;https://www.sohu.com/a/433998123_99956743;https://www.nature.com/articles/s41928-020-00485-6
相关报告
  • 《迄今最小原子存储单元面世》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-11-30
    • 据物理学家组织网23日报道,美国科学家研制出了迄今最小的存储设备,其横截面积仅1平方纳米,容量约为25兆比特/平方厘米,与目前的商用闪存设备相比,每层的存储密度提高了100倍。研究人员表示,最新研究有助于科学家研制出更快、更小、更智能、更节能的芯片,应用于从消费电子到类脑计算机等多个领域。   研究人员称,最新研究基于他们两年前的研究成果。当时,他们研制出了那时最纤薄的存储设备——“atomristor”,其厚度仅为单个原子厚度。但要使存储设备变得更小,横截面积也要更小。因此,在最新研究中,他们将存储器的横截面积缩小到仅1平方纳米。   研究人员解释称,制造存储设备的材料中的缺陷或孔洞是其拥有高密度存储能力的关键所在。最新研究负责人、得克萨斯大学奥斯汀分校电气和计算机工程学系教授德杰·阿金沃德说:“当一个额外的金属原子闯入纳米孔洞内并填充它时,会将自己的一些导电性能赋予材料,这会产生变化或存储效应。”   阿金沃德介绍道,最新研制出的存储器是一种忆阻器,这是存储器研究领域的“香饽饽”,它们可以做更小,同时拥有更多存储容量。存储设备越小,越有望催生更小的芯片和处理器,如此也有助科学家们研制出更紧凑的计算机和手机。缩小尺寸也可以降低存储器的能耗并提高存储容量,这意味着科学家们可以研制出能耗更少但运行速度更快、更智能的设备。   美国陆军研究办公室资助了这一研究,该办公室项目经理帕尼·瓦拉纳西说:“这项研究获得的结果为开发国防部感兴趣的下一代应用,如超高密度存储、神经形态计算系统、射频通信系统等铺平了道路。”   阿金沃德说:“存储器领域的‘圣杯’是用单个原子控制存储功能,我们在新研究中实现了这一点。尽管最新研究使用二硫化钼作为主要纳米材料,但我们认为,该发现可能适用于数百种相关的原子厚度的纤薄材料。”   总编辑圈点   忆阻器就是记忆电阻,最吸引人的一点:它可以记忆流经它的电荷数量,或者说,能记住很多信息,这和生物的神经细胞非常像。亦因此,对忆阻器的研发总是和神经形态计算系统联系在一起。人们曾经很担心这一研究最终会导致《终结者》里的“天网”出现,其获得自我意识后对创造者人类倒戈相向。但就目前的研究水平来说,这一担心还为时过早。越来越小的忆阻器的出现,可以帮助我们实现更小的芯片和处理器,消耗更少的电力、占用更少的空间,然后在遥远的未来,或真正出现一套与生物大脑没有太大区别的计算系统。
  • 《德克萨斯大学奥斯汀分校等对2019-nCoV 刺突蛋白融合前构象的冷冻电镜结构解析》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-03-25
    • Science杂志于3月13日发表了德克萨斯大学奥斯汀分校和美国过敏与传染病研究所的研究论文“Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation”,对新型冠状病毒(2019-nCoV) 刺突蛋白融合前构象的冷冻电镜结构进行了解析。该研究曾于2月15日在bioRxiv预印平台发布。 文章称,冠状病毒刺突糖蛋白是疫苗,治疗性抗体和诊断方法的关键靶标。为了促进医学对策的发展,研究人员确定了融合前构象中2019-nCoV 刺突蛋白三聚体的冷冻电镜结构,分辨率为3.5Å。该三聚体的主要状态具有受体可接近构型向上旋转的三个受体结合结构域(RBD)之一。研究人员还提供了生物物理和结构证据,表明2019-nCoV 刺突蛋白以比SARS-CoV 更高的亲和力结合ACE2(血管紧张素转化酶2)。此外,研究人员测试了几种已发表的SARS-CoV RBD-特异性单克隆抗体,发现其与2019-nCoV 刺突蛋白没有明显的结合,这表明这两种病毒中RBD之间的抗体交叉反应性可能受到限制。文章称2019-nCoV 刺突蛋白的结构使快速开发和评估医疗对策成为可能,以解决持续存在的公共卫生危机。