《电解水有了低成本高活性双功能催化剂》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-06-05
  • 中国科学院合肥物质科学研究院固体物理研究所李越研究员课题组在分级异质结构Ni3Se4@NiFe水滑石纳米片的制备及其全解水研究方面取得新进展,相关研究结果日前发表在《纳米视界》上。该研究工作为开发低成本、高活性的双功能电解水催化剂提供了一种有效的设计思路。

    电解水规模化应用的关键是如何降低阳极析氧反应(OER)和阴极析氢反应(HER)的过电位,实现在低电位下的大电流产氢,进而降低电能消耗与制氢成本。研究表明Ru、Ir、Pt等贵金属及其氧化物具有最优异的析氢催化性能,但其价格昂贵、资源匮乏限制了这些材料的广泛应用。因此,发展廉价高效非贵金属电解水催化剂具有十分重要的科学意义和实用价值。

    现有催化剂通常只对一种反应(OER或HER)具有较高的催化活性,因此电解水反应需要两种不同类型催化剂。这使得电解水设备更加复杂,运行成本增加。如果将不同功能的催化剂组装成一种分级结构的异质结纳米材料,构筑一种双功能全解水催化剂,可以有效解决上述问题。

    基于此,固体物理研究所的研究人员通过简单的两步水热法,将具有析氢性能的Ni3Se4纳米片和析氧性能的NiFe组装成具有分级结构的异质全解水催化剂。由于稳定的分级结构以及催化剂之间的电子相互作用,这种纳米催化剂具有优异的全解水活性,全解水电流密度为10mA/cm2时,所需电压仅为1.54V,并且在电流密度为10mA/cm2时持续工作100小时,没有明显的衰减,证明其稳定性非常好。

  • 原文来源:http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2019-06/05/content_422902.htm?div=-1
相关报告
  • 《我国学者在低成本电解水析氢催化领域取得重要进展》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-02-25
    • 在国家自然科学基金项目(批准号:52071083、52401292、22172003、12074016、12274009)等项目资助下,复旦大学孙大林、方方等人联合北京工业大学卢岳、北京大学周继寒和天津大学刘辉等人在低成本电解水析氢催化剂开发方面取得重要进展。相关成果以“电还原衍生的畸变纳米孪晶激活纯铜电催化析氢性能(Electroreduction-Driven Distorted Nanotwins Activate Pure Cu for Efficient Hydrogen Evolution)”为题发表在《自然·材料》(Nature Materials)期刊上。论文链接:https://www.nature.com/articles/s41563-024-02098-2。   电解水析氢具有制氢纯度高、与可再生能源适配性好等优点,是一种高效清洁的制氢方式。在电解析氢过程中,催化剂起着至关重要的作用。它能够降低电解反应的活化能,从而提高析氢反应速率和效率。一般认为,Pt和Ir等铂系金属是最有效的析氢反应催化剂,但其高成本和低储量严重限制了其广泛应用。与铂系金属相比,铜(Cu)具有低成本、高储量和优异的导电性,是一种潜在的理想析氢催化剂。然而Cu对析氢反应的氢中间体吸附过弱导致其析氢催化活性极差,一般被用作集流体而不是催化剂。理论计算表明,引入拉伸应变和降低配位数可以有效地增强Cu对氢中间体的吸附作用。因此,如何通过局域结构调控在降低配位数的同时引入强且稳定的拉伸应变是激活纯Cu析氢催化活性的核心难点。   近日,研究团队受到电化学充放氢反应中大反应驱动力的启发,创新地提出了激光烧蚀和电化学还原耦合的两步法合成策略,首次制备出富含畸变纳米孪晶的纯Cu析氢催化剂(DNTs-Cu)。该方法首先利用激光液相烧蚀的非平衡条件制备出富含晶界的Cu2O多晶纳米颗粒,然后再利用电还原将Cu2O还原成Cu。在电还原过程中,电化学反应的强驱动力使得细小的Cu2O晶粒被快速还原,从而导致晶界诱发的晶格失配得以保留,在还原后的纳米Cu中形成了大量畸变的多重孪晶结构。局域结构分析表明,DNTs-Cu中畸变的多重孪晶结构互锁,形成了强且稳定的拉伸应变,并在表面形成了大量原子台阶,使得Cu-Cu键长由铜箔的2.158 ?增长至2.255 ?,配位数由铜箔的12降低至9.5。DNTs-Cu的强拉伸应变以及表面原子台阶所产生的低配位提升了Cu催化位点的d带中心,显著地增强了Cu对氢中间体的吸附。在酸性电解液中,最优性能的DNTs-Cu在10 mA cm?2电流密度下的过电位仅为61 mV,与商用Pt/C催化剂相当;当电流密度超过100 mA cm?2时,其催化活性全面超越商用Pt/C。得益于多重孪晶互锁的稳定结构,DNTs-Cu表现出十分优异的催化稳定性。在500 mA cm?2高电流密度下连续运行125小时,催化性能仅衰减2%。与已报道的以Cu作为活性位点的Cu基析氢催化剂材料相比,DNTs-Cu具有更优异的催化活性和稳定性。   该研究表明,与其他传统的金属材料制备方法相比,电化学方法可以产生更强的驱动力来产生强且稳定的晶格应变,为金属功能材料的开发与制备提供了新合成思路。同时,通过改变原子配位数和晶格应变来调节反应中间体的吸附能进而激活非活性金属催化性能,为高效电催化剂的设计提供了新范式。
  • 《美国高校开发三层双功能制氢催化剂》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-10-31
    • 由莱斯大学和休斯敦大学开发的一种新型高效、高度活跃的双功能催化剂可将水分解成氢和氧,而不需要像铂这样昂贵的金属。该研究小组认为,这项工作提供了一种简单的策略,即从地球丰富的材料中制造出高效的电催化剂,用于整体水分离。   由莱斯大学生产、休斯敦大学测试的电解膜是一种三层结构的镍、石墨烯和三元金属磷化物(FeMnP、铁、锰和磷)。泡沫镍使薄膜有一个较大的表面,使导电石墨烯保护镍不受降解,金属磷化物也能进行反应。   石墨烯,一种原子厚度的碳,是保护底层镍的关键。在化学气相沉积(CVD)炉中的镍泡沫上形成1至3层石墨烯,并且还通过CVD和单一前体将铁、锰和磷加在其上。   通过对镍泡沫和无石墨烯的磷化物进行了测试比较了中间的镍泡沫和无石墨烯的磷化物,结果发现导电石墨烯降低了氢和氧反应的电荷转移电阻。   Whitmire表示,该材料具有可扩展性,可应用于生产氢和氧的汽车工业中,也可用于电催化储存能量的太阳能和风力发电设施。   在氢进化反应(HER)和氧进化反应(OER)中,FeMnP表现出高的电催化活性。利用FeMnP / GNF作为阳极和阴极进行整体水分离,团队在低至1.55 V的电池电压下实现了10 mA cm-2的电流密度。通过密度泛函理论(DFT)的计算表明,暴露Fe和Mn位点的切面是实现HER高活性的必需条件。   Kenton Whitmire表示:“常规金属有时会在催化过程中氧化。通常,氢的进化反应是酸的,氧的进化反应是在碱中完成的。我们这次所研发的是一个稳定的材料,不管是在酸性还是碱性溶液中。”   这一发现建立在研究人员今年早些时候发明的一种简单的氧进化催化剂之上。在这项工作中,研究小组直接在一个半导体纳米线阵列上产生了催化剂,将太阳光转化为太阳能水分解的能量。