《揭示DNA 修复在基因编辑中突变新机制》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: huangcui
  • 发布时间:2017-12-15
  • 中国科学院上海生命科学研究院(人口健康领域)中国科学院 - 马普学会计算生物学伙伴研究所杨力研究组与上海科技大学陈佳研究组、南京医科大学沈彬研究组合作研究揭示了胞嘧啶脱氨酶(APOBEC)在 CRISPR/Cas9 引发的 DNA 断裂修复过程中产生突变的新机制,为进一步提高基因组编辑保真度提供了新思路。

    CRISPR/Cas9是迄今为止最为高效便捷的基因组编辑技术。虽然其在生命科学基础研究和生物技术开发等领域被广泛应用,并在临床研究中显示出了极大潜力,但由于编辑过程中存在的非靶向突变以及基因治疗的不可逆性,CRISPR/Cas9 技术的精确性问题一直是科学界的焦点所在。由于 APOBEC 能够在 DNA 单链断裂修复过程中结合单链DNA并造成随机突变,而单链核酸(如单链寡聚核苷酸、基因组单链DNA)在 CRISPR/Cas9 引发的DNA修复过程中广泛存在。因此,评估 APOBEC 能否在 CRISPR/Cas9 引发的基因组DNA修复过程中产生突变,对于改进CRISPR/Cas9 编辑技术的精确性以及DNA损伤修复等研究都具有重要意义。在该项研究中,研究人员证实了 APOBEC 能够作用于单链寡聚核苷酸的胞嘧啶位点,并通过 CRISPR/Cas9 引发的同源重组修复过程,在基因组DNA的同源胞嘧啶位点处产生碱基替换突变。同时,研究人员还发现 APOBEC 能够在由 Cas9 切刻酶引起的基因组 DNA 单链断裂修复过程中,激活碱基切除修复通路并产生DNA双链断裂,进而产生非靶向的随机碱基插入或缺失(insertions/deletions, indels)。基于上述机制研究,研究人员提出了利用双链寡聚核苷酸或双链质粒 DNA 作为修复模板,抑制内源APOBEC 的策略来提高 CRISPR/Cas9 编辑保真度和精确性的方法。

    杨力研究组长期从事计算生物学和组学研究。在此项合作研究中,研究人员利用计算和实验相结合的方法体系,阐明了 APOBEC 在 CRISPR/Cas9 引起的基因组DNA 断裂修复过程中产生突变的分子机制,并据此成功与陈佳研究组合作开发出了增强型的基因组碱基编辑系统(Wang et al.,2017,Cell Research),实现了更高精度和更高效率的碱基编辑。

    相关研究成果以 APOBEC3 induces mutations during repair of CRISPR-Cas9-generated DNA breaks 为题,在线发表于《自然—结构与分子生物学》。该研究得到了科技部、国家自然科学基金委、上海市科学技术委员会、上海科技大学大科研启动基金的资助。

  • 原文来源:https://www.nature.com/articles/s41594-017-0004-6
相关报告
  • 《Science论文深度解读!基因编辑大牛揭示碱基编辑器的作用机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-07-31
    • 在短短八年内,CRISPR-Cas9已经成为基础研究和基因治疗的首选基因组编辑器。但CRISPR-Cas9也催生了其他潜在的强大DNA操纵工具,从而可能帮助修复导致遗传性疾病的基因突变。 在一项新的研究中,来自美国加州大学伯克利分校的研究人员如今获得了这些最有前途的工具之一---碱基编辑器---的首个详细的三维结构,这为调整碱基编辑器使之在患者中的使用更加灵活和可控提供了一个路线图。相关研究结果发表在2020年7月31日的Science期刊上,论文标题为“DNA capture by a CRISPR-Cas9–guided adenine base editor”。 碱基编辑器在4年前首次被构建出,可与DNA结合,但不切割DNA,而是精确地用一种核苷酸替换另一种核苷酸。它们已经用于校正人类基因组中的单核苷酸突变。在目前已知的1.5万多种遗传性疾病中,大约60%可能可以由目前可获得的碱基编辑器加以校正。 论文共同第一作者、加州大学伯克利分校博士后研究员Gavin Knott说,“我们第一次能够观察到碱基编辑器在发挥作用。如今,我们不仅可以了解它什么时候起作用,什么时候不起作用,而且还可以设计下一代碱基编辑器,使之变得更好、更适合于临床使用。” 碱基编辑器是由一种酶和部分失活的Cas9(dCas9)融合而成,其中dCas9可以结合DNA,但不切割DNA,这种酶可以激活或沉默基因,或者修改相邻的DNA区域。由于这项研究报告了这种融合蛋白的首个结构,它可能有助于指导无数其他基于Cas9的基因编辑工具的设计。 论文共同第一作者、前加州大学伯克利分校博士后研究员Audrone Lapinaite(如今为亚利桑那州立大学助理教授)说,“我们实际上第一次观察到碱基编辑器作为两个独立的模块运行:一个是dCas9模块,它提供特异性;另一个是催化模块,它提供编辑活性。我们获得的这个碱基编辑器与它的靶标结合在一起时的结构真地给了我们一种思考Cas9融合蛋白的方法,总体而言,这给我们提供了dCas9的哪个区域更有利于与其他蛋白融合在一起的想法。” 一次编辑一个碱基 2012年,科学家们首次展示了如何重新改造细菌核酸酶Cas9,将它变成在从细菌到人类的所有类型细胞中都可使用的基因编辑工具。CRISPR-Cas9是加州大学伯克利分校生物化学家Jennifer Doudna和她的法国同事Emmanuelle Charpentier的心血结晶,已改变了生物学研究,而且几十年来,首次将基因治疗进入临床。 科学家们很快就利用Cas9构建出一系列其他工具。Cas9能精确地靶向一段特定的DNA,然后就像一把剪刀一样精确地切割它。然而,Cas9的剪刀功能可以被破坏,使得它能够在不切割DNA的情况下靶向并结合DNA。通过这种方式,dCas9可以将不同的酶引导到目标DNA区域上,并让该酶操纵基因。 2016年,哈佛大学的David Liu将dCas9与另一种细菌蛋白结合起来,从而允许外科手术般地将一个核苷酸精确地替换成另一个核苷酸:他们构建出首个碱基编辑器。 早期的腺嘌呤碱基编辑器编辑速度很慢,而最新的版本,称为ABE8e,编辑速度快得惊人。它能在15分钟内完成近100%的碱基编辑工作。然而,在试管中,ABE8e可能更容易编辑非预期的DNA片段,有可能产生所谓的脱靶效应。 这项研究揭示的结构是通过一种强大的称为低温电子显微镜(cryoEM)的成像技术获得的。活性检测显示了为何ABE8e容易产生更多的脱靶编辑:与dCas9融合在一起的脱氨酶蛋白始终处于活性状态。当dCas9在细胞核中跳动时,它在找到预定目标之前,会结合数百或数千个DNA片段并脱落下来。与它融合在一起的脱氨酶就像一门松散的大炮,不会等待完美的匹配,往往在dCas9找到最终的目标之前就会编辑碱基。 了解脱氨酶和dCas9是如何连接在一起的,可以使得人们对此进行重新设计,以便让这种酶只有在Cas9找到靶标后才有活性。 Lapinaite说,“如果你真地想设计出真正特异性的融合蛋白,你必须找到一种方法使得催化结构域更多地成为dCas9的一部分,这样它就会在感知dCas9找到正确的靶标时才会被激活,而不是一直处于活性状态。” ABE8e的结构还精确地指出了脱氨酶蛋白中的两个特殊变化(即两个点突变),这些变化使得这种碱基编辑器比它的早期版本ABE7.10更快地工作。这两个点突变使得这种蛋白能够更紧密地抓住DNA,更有效地将A替换成G。 Knott补充道,“作为一个结构生物学者,我真地很想研究一种分子,并思考如何合理地改进它。这种结构和伴随的生物化学特性真地给了我们这种力量。我们如今可以对这个编辑系统在细胞中的行为做出理性的预测,这是因为我们可以看到它并预测它将如何破坏DNA或者预测如何让它变得更好。”
  • 《青岛能源所等揭示植物DNA损伤调控新机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-12-07
    •   DNA是生物体遗传信息的载体,是正常生长、发育和繁衍所需的遗传模板,对于维持DNA的完整性和稳定性至关重要。紫外线、辐射和环境污染等引起的DNA损伤影响人和动物的衰老,或导致疾病乃至癌症。对植物而言,外界环境因子,如土壤盐碱、重金属、电离辐射、紫外线、洪涝等胁迫,同样会导致DNA损伤,影响植物生长发育甚至对作物生产造成危害。然而,DNA损伤响应及修复的机制在动物和植物中不完全相同,且在植物中的研究较为滞后。调控植物DNA损伤及其修复的机制的研究,对于增强作物抗性、提高生物产量具有重要的生物学意义。近日,中国科学院青岛生物能源与过程研究所研究员李胜军带领的能源植物改良与利用研究组,揭示了MAC5A和26S蛋白酶体协同调控植物DNA损伤响应(DDR)进而影响植物生长发育及适应高硼胁迫的新机制。相关研究成果发表在《植物生理》(Plant Physiology)上。   MOS4-associated complex(MAC)复合体参与植物的生长发育、胁迫响应、pre-mRNA可变剪切和miRNA生物合成等生物学过程。MAC5是MAC复合体的一个附属亚基,其功能完全丧失后导致严重的发育缺陷和胚胎致死。此前,研究团队提出,MAC5通过调控pri-miRNA的稳定性影响miRNA的积累(Li et al., PNAS 2020),但MAC5在植物体内的其他生物学功能尚不完全清楚。         研究发现,MAC5A缺失突变体mac5a对甲基磺酸甲酯(MMS,一种DNA损伤诱导剂)的处理更加敏感,表现出主根生长抑制、真叶叶原基发育延缓等表型。RNA-seq分析发现,MAC5A缺失导致DDR相关基因的表达及pre-mRNA的可变剪切发生变化。进一步,研究通过IP-MS质谱分析鉴定到多个26S蛋白酶体亚基与MAC5A互作;通过生化和遗传分析进一步验证了MAC5A与26S蛋白酶体关键亚基RPN1A和RPT2A之间的互作关系。MAC5A调控26S蛋白酶体的活性,同时26S蛋白酶体也影响MAC5A蛋白的降解。此外,土壤中高浓度的硼影响作物的产量和品质,其中主要原因之一是高硼胁迫导致植物DNA损伤。研究表明,MAC复合体的多个核心亚基和26S蛋白酶体均参与高硼诱导的DNA损伤响应过程。该研究揭示了MAC复合体和26S蛋白酶体协同调控植物DDR过程的分子机制。   研究工作得到国家自然科学基金面上项目、山东能源研究院创新基金、山东省、中国科学院、中国博士后科学基金等的支持。美国内布拉斯加大学林肯分校、河南大学、西南大学的科研人员参与研究。   植物的生长发育与环境适应能力受到RNA的转录及转录后调控,故揭示调控植物生长、抗逆的分子基础,有助于作物尤其是能源作物的遗传改良。截至目前,该团队在RNA转录后加工领域取得了系列进展,揭示了MAC复合体附属亚基MAC5(Li et al., PNAS 2020)、MAC复合体核心亚基MAC3(Li et al., Plant Cell 2018)、DEAD-box RNA螺旋酶SMA1(Li et al., Nucleic Acids Research 2018)调控植物生长发育和miRNA合成代谢的生物学机制。