《揭示DNA 修复在基因编辑中突变新机制》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: huangcui
  • 发布时间:2017-12-15
  • 中国科学院上海生命科学研究院(人口健康领域)中国科学院 - 马普学会计算生物学伙伴研究所杨力研究组与上海科技大学陈佳研究组、南京医科大学沈彬研究组合作研究揭示了胞嘧啶脱氨酶(APOBEC)在 CRISPR/Cas9 引发的 DNA 断裂修复过程中产生突变的新机制,为进一步提高基因组编辑保真度提供了新思路。

    CRISPR/Cas9是迄今为止最为高效便捷的基因组编辑技术。虽然其在生命科学基础研究和生物技术开发等领域被广泛应用,并在临床研究中显示出了极大潜力,但由于编辑过程中存在的非靶向突变以及基因治疗的不可逆性,CRISPR/Cas9 技术的精确性问题一直是科学界的焦点所在。由于 APOBEC 能够在 DNA 单链断裂修复过程中结合单链DNA并造成随机突变,而单链核酸(如单链寡聚核苷酸、基因组单链DNA)在 CRISPR/Cas9 引发的DNA修复过程中广泛存在。因此,评估 APOBEC 能否在 CRISPR/Cas9 引发的基因组DNA修复过程中产生突变,对于改进CRISPR/Cas9 编辑技术的精确性以及DNA损伤修复等研究都具有重要意义。在该项研究中,研究人员证实了 APOBEC 能够作用于单链寡聚核苷酸的胞嘧啶位点,并通过 CRISPR/Cas9 引发的同源重组修复过程,在基因组DNA的同源胞嘧啶位点处产生碱基替换突变。同时,研究人员还发现 APOBEC 能够在由 Cas9 切刻酶引起的基因组 DNA 单链断裂修复过程中,激活碱基切除修复通路并产生DNA双链断裂,进而产生非靶向的随机碱基插入或缺失(insertions/deletions, indels)。基于上述机制研究,研究人员提出了利用双链寡聚核苷酸或双链质粒 DNA 作为修复模板,抑制内源APOBEC 的策略来提高 CRISPR/Cas9 编辑保真度和精确性的方法。

    杨力研究组长期从事计算生物学和组学研究。在此项合作研究中,研究人员利用计算和实验相结合的方法体系,阐明了 APOBEC 在 CRISPR/Cas9 引起的基因组DNA 断裂修复过程中产生突变的分子机制,并据此成功与陈佳研究组合作开发出了增强型的基因组碱基编辑系统(Wang et al.,2017,Cell Research),实现了更高精度和更高效率的碱基编辑。

    相关研究成果以 APOBEC3 induces mutations during repair of CRISPR-Cas9-generated DNA breaks 为题,在线发表于《自然—结构与分子生物学》。该研究得到了科技部、国家自然科学基金委、上海市科学技术委员会、上海科技大学大科研启动基金的资助。

  • 原文来源:https://www.nature.com/articles/s41594-017-0004-6
相关报告
  • 《Science论文深度解读!基因编辑大牛揭示碱基编辑器的作用机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-07-31
    • 在短短八年内,CRISPR-Cas9已经成为基础研究和基因治疗的首选基因组编辑器。但CRISPR-Cas9也催生了其他潜在的强大DNA操纵工具,从而可能帮助修复导致遗传性疾病的基因突变。 在一项新的研究中,来自美国加州大学伯克利分校的研究人员如今获得了这些最有前途的工具之一---碱基编辑器---的首个详细的三维结构,这为调整碱基编辑器使之在患者中的使用更加灵活和可控提供了一个路线图。相关研究结果发表在2020年7月31日的Science期刊上,论文标题为“DNA capture by a CRISPR-Cas9–guided adenine base editor”。 碱基编辑器在4年前首次被构建出,可与DNA结合,但不切割DNA,而是精确地用一种核苷酸替换另一种核苷酸。它们已经用于校正人类基因组中的单核苷酸突变。在目前已知的1.5万多种遗传性疾病中,大约60%可能可以由目前可获得的碱基编辑器加以校正。 论文共同第一作者、加州大学伯克利分校博士后研究员Gavin Knott说,“我们第一次能够观察到碱基编辑器在发挥作用。如今,我们不仅可以了解它什么时候起作用,什么时候不起作用,而且还可以设计下一代碱基编辑器,使之变得更好、更适合于临床使用。” 碱基编辑器是由一种酶和部分失活的Cas9(dCas9)融合而成,其中dCas9可以结合DNA,但不切割DNA,这种酶可以激活或沉默基因,或者修改相邻的DNA区域。由于这项研究报告了这种融合蛋白的首个结构,它可能有助于指导无数其他基于Cas9的基因编辑工具的设计。 论文共同第一作者、前加州大学伯克利分校博士后研究员Audrone Lapinaite(如今为亚利桑那州立大学助理教授)说,“我们实际上第一次观察到碱基编辑器作为两个独立的模块运行:一个是dCas9模块,它提供特异性;另一个是催化模块,它提供编辑活性。我们获得的这个碱基编辑器与它的靶标结合在一起时的结构真地给了我们一种思考Cas9融合蛋白的方法,总体而言,这给我们提供了dCas9的哪个区域更有利于与其他蛋白融合在一起的想法。” 一次编辑一个碱基 2012年,科学家们首次展示了如何重新改造细菌核酸酶Cas9,将它变成在从细菌到人类的所有类型细胞中都可使用的基因编辑工具。CRISPR-Cas9是加州大学伯克利分校生物化学家Jennifer Doudna和她的法国同事Emmanuelle Charpentier的心血结晶,已改变了生物学研究,而且几十年来,首次将基因治疗进入临床。 科学家们很快就利用Cas9构建出一系列其他工具。Cas9能精确地靶向一段特定的DNA,然后就像一把剪刀一样精确地切割它。然而,Cas9的剪刀功能可以被破坏,使得它能够在不切割DNA的情况下靶向并结合DNA。通过这种方式,dCas9可以将不同的酶引导到目标DNA区域上,并让该酶操纵基因。 2016年,哈佛大学的David Liu将dCas9与另一种细菌蛋白结合起来,从而允许外科手术般地将一个核苷酸精确地替换成另一个核苷酸:他们构建出首个碱基编辑器。 早期的腺嘌呤碱基编辑器编辑速度很慢,而最新的版本,称为ABE8e,编辑速度快得惊人。它能在15分钟内完成近100%的碱基编辑工作。然而,在试管中,ABE8e可能更容易编辑非预期的DNA片段,有可能产生所谓的脱靶效应。 这项研究揭示的结构是通过一种强大的称为低温电子显微镜(cryoEM)的成像技术获得的。活性检测显示了为何ABE8e容易产生更多的脱靶编辑:与dCas9融合在一起的脱氨酶蛋白始终处于活性状态。当dCas9在细胞核中跳动时,它在找到预定目标之前,会结合数百或数千个DNA片段并脱落下来。与它融合在一起的脱氨酶就像一门松散的大炮,不会等待完美的匹配,往往在dCas9找到最终的目标之前就会编辑碱基。 了解脱氨酶和dCas9是如何连接在一起的,可以使得人们对此进行重新设计,以便让这种酶只有在Cas9找到靶标后才有活性。 Lapinaite说,“如果你真地想设计出真正特异性的融合蛋白,你必须找到一种方法使得催化结构域更多地成为dCas9的一部分,这样它就会在感知dCas9找到正确的靶标时才会被激活,而不是一直处于活性状态。” ABE8e的结构还精确地指出了脱氨酶蛋白中的两个特殊变化(即两个点突变),这些变化使得这种碱基编辑器比它的早期版本ABE7.10更快地工作。这两个点突变使得这种蛋白能够更紧密地抓住DNA,更有效地将A替换成G。 Knott补充道,“作为一个结构生物学者,我真地很想研究一种分子,并思考如何合理地改进它。这种结构和伴随的生物化学特性真地给了我们这种力量。我们如今可以对这个编辑系统在细胞中的行为做出理性的预测,这是因为我们可以看到它并预测它将如何破坏DNA或者预测如何让它变得更好。”
  • 《研究揭示在DNA复制期间保护复制叉新机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:xxw
    • 发布时间:2019-07-08
    • 在DNA复制期间,复制叉遇到的问题不断威胁着基因组的完整性。BRCA1、BRCA2和一部分范科尼贫血蛋白(Fanconi anaemia protein)通过涉及RAD51的途径保护停滞的复制叉免受核酸酶的降解。BRCA1在复制叉保护中作出的贡献和发挥的调节作用以及这种作用如何与它在同源重组中的作用相关联在一起,仍然是不清楚的。 在一项新的研究中,来自英国伯明翰大学和帝国理工学院的研究人员发现BRCA1与BARD1形成的复合物而不是经典的BRCA1–PALB2相互作用是复制叉保护所必需的。相关研究结果于2019年7月3日在线发表在Nature期刊上,论文标题为“Isomerization of BRCA1–BARD1 promotes replication fork protection” BRCA1–BARD1受到磷酸化指导的脯氨酰异构酶PIN1介导的构象变化的调节。PIN1活性增强BRCA1–BARD1与RAD51之间的相互作用,从而增加RAD51在停滞的复制叉结构中的存在。 这些研究人员在患有表现出对新生链较差保护但保留同源重组能力的癌症的患者中鉴定出BRCA1–BARD1的遗传变异,因而确定了复制叉保护所必需的和与癌症产生相关的BRCA1-BARD1结构域。 综上所述,这些发现揭示出一种由BRCA1介导的途径控制着复制叉保护。