《深圳先进院在三维生物打印制造人工类组织领域取得进展》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: huangcui
  • 发布时间:2017-12-12
  • 近日,中国科学院深圳先进技术研究院生物医药与技术研究所人体组织与器官退行性研究中心副研究员阮长顺、研究员潘浩波、教授吕维加组成的研究团队,在三维生物打印制造人工类组织领域取得新进展。研究团队通过生物打印优化设计及诱导型生物墨水的研发,构筑精确排布成骨细胞的“活”人工骨组织。制造的“活”人工骨,不仅维持细胞短时间的高存活率(24 小时内大于 95%),并能实现细胞长时间的体内外功能化,促进新骨再生。相关研究成果以 3D-Bioprinted Osteoblast-Laden Nanocomposite Hydrogel Constructs with Induced Microenvironments Promote Cell Viability, Differentiation, and Osteogenesis both In Vitro and In Vivo 为题,发表在 Advanced Science 上。

    将成体细胞或干细胞与生物材料复合作为生物打印墨水,制造具有功能的人工组织与器官是组织修复再生的研究热点和发展趋势。然而,如何维持通过三维打印后活体细胞的短期活性,并实现三维打印人工类组织在体内外的长期功能化,是限制三维生物制造研究应用的瓶颈。阮长顺课题组从事三维生物打印及生物材料墨水的相关研究,先后探索生物材料降解性能调控细胞行为和三维打印构建高强度纳米复合水凝胶的人工骨组织研究。

    研究中,团队搭建了一种多通道、常温成型的三维生物制备系统(Bioscaffolder 3.1, GeSiM)。基于该平台,通过材料优化构建,实现以活性的高强度水凝胶 / 纳米硅镁盐复合生物墨水构建稳固的骨修复支架支撑体系(第一通道)和以生物相容性优异的透明质酸包裹均匀分散的成骨细胞为维持细胞存活体系(第二通道)。两通道交替打印,实现含细胞的“活”人工骨组织。前期,透明质酸提供细胞保护,维持高细胞存活率和精确排布。后期支撑体系控释骨修复活性离子(镁,硅离子等),促进细胞分化和功能化。进一步体内动物实验证实,该“活”类骨组织,不仅具有在骨缺损部位优异修复能力,还能实现异位新骨生成。因此,该研究将推动三维生物制造技术在组织修复再生中的应用。

    研究工作得到了国家重点研发计划、深圳市孔雀团队、国家自然基金、国家高技术研究发展计划(863 计划)广东省青年拔尖人才及深圳市科创委等的资助。

  • 原文来源:http://onlinelibrary.wiley.com/doi/10.1002/advs.201700550/full
相关报告
  • 《深圳先进院三维打印构建骨/软骨一体化修复支架领域获得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-01-25
    • 中国科学院深圳先进技术研究院医药所人体组织与器官退行性研究中心阮长顺副研究员课题组与 天津大学 材料学院 刘文广 教授团队合作在三维打印构建骨 / 软骨一体化修复支架领域获得新进展。该团队首次运用直接一步法 3D 打印技术构建生物活性梯度的高强度水凝胶,实现一体化仿生骨 - 软骨双相结构,并证实其体内外具有同时促进骨 - 软骨修复能力。此项研究成果以题为 Direct 3D Printing of High Strength Biohybrid Gradient Hydrogel Scaffolds for Efficient Repair of Osteochondral Defect (直接 3 D 打印高 强度杂化梯度水凝胶支架 用于 骨软骨修复 )发表在权威刊物 Advanced Functional Materials (《先进功能 材料 》, 2018 DOI: 10.1002/adfm.201706644 ,影响因子 12.124 )上。   关节软骨本身没有神经及血管支配、且所含细胞量极少,损伤后很难实现自身修复。而且一旦软骨受到损伤,会累及软骨下骨,进而导致骨 -软骨缺损。由于软骨和软骨下骨的生物学特性不同,导致骨-软骨一体化修复极具挑战。通常先 分别制作 骨 和 软骨 组织 仿生 支架 , 再 组装 成 骨 - 软骨 一体化 再生支架 ,往往 在实际中骨与软骨之间的界面 结合 力 比较 弱,难以满足应用需求。 因此 , 如何快速 构建 仿生骨 - 软骨 再生 修复的 一体化再生 支架 具有较大挑战 。   本研究 中, 该团队发明了一种可直接 3D打印的氢键增强的高强度水凝胶墨水。该墨水是一种基于丙烯酰基甘氨酰胺(PNAGA)共聚物超分子聚合物水凝胶,PNAGA共聚物水凝胶具有比其均聚物水凝胶更低的熔融温度和更好的流动性,可直接3D打印,无需光交联,打印后可快速固化成型并保持完好的宏观和微观结构。同时,团队模拟软骨-骨一体化结构,利用多喷头交替打印制备成底层含有β-TCP,顶部含有若干层负载生长因子TGF-β1的梯度支架。该生物杂化梯度水凝胶支架长期浸泡PBS后,仍保持稳定的孔隙结构和良好的机械强度,在高孔隙率下,压缩强度仍然超过1 MPa,循环压缩100次后,未发现强度下降和剥离。体内实验表明该杂化梯度水凝胶支架可以同时促进软骨和软骨下骨再生。   研究工作得到了 国 家 自然 基金、 深圳市孔雀团队 、广东 省 青年 拔尖 人才及 深圳市科创委 等项目的资助。
  • 《深圳先进院等在硅锗合金的热电性能调控领域取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-07-23
    • N型硅锗合金是一类性能优异的高温热电材料,由它制成的放射性同位素热电发电机RTG可以长时间有效地将放射性同位素(Pu)衰变产生的热量转化为电能,工作性能稳定而无需额外燃料和人工维护,满足了航空航天器、卫星等设备在黑暗广袤的太空中的各种仪器供电需求。硅锗合金多应用于航天航空而很少出现在日常生活中,一个主要原因就是大量掺杂的锗元素提高了材料成本;另一个原因是硅锗合金的热导率在5 W/mK以上,制约了其热电转换效率。如何利用低锗组分的硅锗合金实现同等甚至更为优异的热电转换应用,就需要考虑除了合金材料对声子的质量散射以外其他的作用机理。   对此中国科学院深圳先进技术研究院的隋帆博士与其合作者展开了对于低锗组分的硅锗合金材料的热电性能调控相关的研究,通过快速的放电等离子烧结技术,保留硅锗合金的微纳结构以及合金母体中的异质纳米颗粒,这种合成方法可以引入大量边界散射,使得低锗组分材料具有与RTG的高锗合金一样高效的热电转换效率。另外,本研究与美国喷气推进实验室(JPL)合作,利用合金材料这一优异的测试标样对比了塞贝克系数的两种现行主要测试方法:同轴法和异轴法,发现异轴法会在热电偶局部造成“冷点效应”,使得高温区域的塞贝克系数测量值明显偏高,这也就意味着,现有的广泛应用的异轴法测试提供了大量误导性的文献数据,引起学术界广泛关注。论文以“Influence of YbP on the thermoelectric properties of n-type P doped Si95Ge5 alloy”为题于近日发表在Journal of Alloys and Compounds期刊上。   硅材料往往具有较高的热导率,合金体系通过锗元素掺杂,可以提高对于声子的质量散射,降低热导率,诸如RTG使用的硅锗合金采用了20%的锗掺杂量,最终实现1.3以上的zT值。在低锗的Si95Ge5材料中,锗原子不能造成足够的质量散射来有效降低热导率,隋帆博士利用一系列不同组分P和YbH2前驱物均匀分散到硅锗合金的多晶粉末中,通过快速的放电等离子体烧结一步完成YbP异质颗粒的反应嵌合和材料的烧结。   通过对样品系统表征发现,1%低浓度掺杂的YbP组分可以降低材料的晶格热导率,取得和RTG同等甚至高温区域更优的热电转换效率。合金中团聚的纳米颗粒会产生比同等数目的单个原子更强的散射,这是由于除了质量差异引起的散射,纳米颗粒会有更明显的弹性系数差异,对于声子频率的散射也受纳米颗粒的半径影响。本研究还发现,不同测量原理的塞贝克系数表征会引起很大的偏差,这是由于在高温区域需要准确获得电极间的温差和电压差需要同轴法测量,才能避免异轴法对在局部因为的温差畸变。该研究对于硅锗合金的热导率调控提出了新的解决思路和实验方案。      图1.样品热导率随温度的变化,在不增加锗含量的前提下,YbP在合金中的掺杂有效降低了材料的晶格热导率   图2.研究对比的两种不同的塞贝克系数测量原理: 左图为异轴法测量,右图为同轴法测量