《苏州纳米所薄膜太阳能电池能级排布研究取得新进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2017-11-10
  • 近年来,新型薄膜太阳能电 池,例如有机/无机杂化钙钛矿器件,有机光伏器件等,以其低成本、高效率、结构简单、柔性携带等优点,引起了人们的广泛关注。对于薄膜太阳能电池而言,器件能级排布决定着光生载流子的分离、复合、传输和收集等微观物理过程,是器件性能的重要决定因素之一。如何有效调控和表征器件能级排 布,是理解器件工作机理,指导材料筛选和器件工艺优化等的重要切入点。

      最近,中国科学院苏州纳米所陈立桅研究员课题组在薄膜太阳能电池能级排布的调控和表征两方面研究中取得新进展:

      1.在有机/无机杂化钙钛矿光伏器件中,深入理解材料掺杂、能级调控与器件性能的相互联系。第一性原理计算表明,金属离子的外层电子轨道是有机/无机杂化钙钛矿能带结构的重要决定因素,进而影响其材料的光学和电学性质。国内外多个研究小组报道少量金属离子替代 Pb 2+可以有效提升器件性能,但能级结构演化与器件性能的相互作用机制依然缺乏深入的研究。陈立桅研究员课题组使用Ag + 替换部分Pb 2+ 在钙钛矿中引入受主态,使得原本呈n型的钙钛矿材料的费米能级向禁带中央移动,呈现本征半导体的性质,这样的变化有效降低钙钛矿中的电子浓度,有益于载流子的平衡输运。通过优化银掺杂比例,还能同时提高钙钛矿材料结晶性,改善薄膜形貌和载流子动力学。在这些因素协同促进下,反式结构钙钛矿平面异质结器件(ITO/Cu:NiO x /perovskite/PCBM/Ag)效率从16.0%提高到18.4%(图1)。进一步地,我们通过等效电路模型证实了钙钛矿载流子浓度与器件性能的相互作用关系。相关研究成果发表在 Nano Lett. 17, 3231-3237 (2017) 。

      2.在有机薄膜光伏器件中,在器件工况下定量表征了反式器件的能级排布。对于薄膜太阳能电池层层堆叠这种垂直封闭型结构,目前缺乏有效的手段直观地测量器件工况下( operando )的能级结构。陈立桅研究员课题组过去在 Nat. Commun. 6, 7745 (2015) 报道了横截面扫描开尔文探针显微镜(cross-sectional SKPM),可以实现短路、开路、暗态和光照等器件工况下的能级结构测量,但是能级排布的定量测量依然悬而未决。进一步地研究中,陈立桅研究员课题组发现针尖/悬梁臂卷积效应是影响器件能级结构的定量测量的重要因素,在存在界面能级突变的反型器件中(ITO/ZnO/BHJ/MoOx/Al)卷积效应甚至能掩盖真实的电势分布,得出方向错误的内建电场。为解决这一问题,他们与所内陆书龙研究员课题组合作,用分子束外延生长的GaAs/GaInP异质结校准针尖传递函数,随后借助反卷积算法去除针尖平均效应,从而还原出反式器件真实的能级排布(图2)。相关研究成果发表在 Nano Energy 40, 454-461 (2017) ,并受邀在《物理化学学报上》撰写专论 ActaPhys-Chim. Sin. 33, 1934-1943(2017) 。

      此项研究工作得到了美国华盛顿大学Alex Jen教授,苏州纳米所陆书龙研究员和马昌期研究员等合作者的大力支持。该研究工作受到国家自然科学基金、科技部重点研发计划以及中国科学院科研装备项目的经费资助与研发条件支持。

相关报告
  • 《苏州纳米所锂硫电池研究取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-11-08
    • 随着社会和科技的发展,人类对电化学储能技术的需求日益增大,研究人员都在寻找具有更高比能量的下一代二次电池。锂硫电池以硫为正极活性物质,基于硫与锂之间的可逆电化学反应来实现能量储存和释放,其理论质量比能量可达到 2600 Wh/kg ,是目前锂离子电池的 3-5 倍,有望被应用于动力电池、便携式电子产品等领域,但 内部的多硫化物穿梭效应造成循环寿命短的问题将限制其将来的实际应用 。   近日,中国科学院苏州纳米所陈立桅研究员课题组在锂硫电池正极材料的研究中取得新进展。研究人员展示了一种不同于常规的硫正极材料包裹的新策略。常规的包覆策略是在硫正极材料颗粒外制备一个包覆层,然后将此材料制备成正极并与电解液等搭配组装成电池。常规包覆策略存在一个难以克服的矛盾:如果材料颗粒在组装电池之前已覆有完美的包覆层,则电解液将难以扩散进材料内部,从而导致内部的硫无法参与充放电过程(图 1b );而如果材料未被完美包覆,则充放电过程中的中间产物多硫化物仍将从正极材料中扩散出来,造成穿梭效应(图 1c )。在此新工作中,研究人员预先在碳 / 硫复合颗粒上生长一层不完美的含孔的预包覆层(在材料制备过程中完成),后将由此材料制备而成的正极与含有特殊添加剂的电解液一起组装成电池。在电解液浸润碳 / 硫颗粒的同时,添加剂将与预包覆层发生反应,从而在颗粒外部原位形成致密的包覆层(图 1d )。    这种原位包覆策略避免了常规手段的弊端,既实现了电解液与材料的浸润,同时又限制了多硫化物的扩散。研究结果表明,采用此新包覆策略的锂硫电池的库仑效率和循环寿命得到显著提升,。其组装的电池在高放电倍率的条件下呈现出极好的循环稳定性 : 在 1C 的电流密度下循环 1000 次,单次循环的容量衰减率仅为 0.030% 。相关结果已发表在 Nature Communications ,8,479,2017.   该项工作得到了中国科学院先导专项、科技部重点研发计划、国家自然科学基金的经费支持。
  • 《突破 | 柔性有机太阳能电池领域取得新进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-04-27
    • 近日,《美国化学会志》(Journal of the American Chemical Society)以“Realizing 17.5% Efficiency Flexible Organic Solar Cellsvia Atomic-Level Chemical Welding of Silver Nanowire Electrodes”为题(DOI:10.1021/jacs.2c01503),在线报道了苏州大学李耀文教授在可印刷银纳米线柔性透明电极(FTE)可控生长及高效柔性有机太阳能电池(FOSCs)构筑取得的重要研究进展。 近年来,FOSCs因其质量轻、可溶液加工、具有可弯曲性等优点引起了科研工作者的广泛关注,并获得了飞速发展。然而,FOSCs的效率较基于玻璃基底制备的刚性电池仍有较大差距,主要原因是基于塑料基底制备的柔性透明电极在面电阻、透过率及可加工性等方面受到了局限。银纳米线(AgNWs)作为新一代高导电率、高透过率、耐弯折的材料已被广泛的应用于柔性电子设备的柔性电极中。但是由于溶液加工的AgNWs之间较差的接触以及与基底之间较弱的粘附力,使得FTE通常表现出较高的粗糙度和较差的导电及机械性能,严重影响了FOSCs的器件性能。基于此,苏州大学李耀文教授等人针对上述问题,提出了“可控还原—化学焊接”策略,通过向银纳米线溶液中引入具有还原性的离子液体(图1a)和硝酸银并与嵌有银纳米线(Em-Ag)的聚对苯二甲酸乙二醇酯(PET)基底相结合,使被还原的银以孪晶生长方式焊接在AgNWs的结点,实现AgNWs和还原银之间原子级接触。这有助于在不牺牲光学透过率的情况下增强AgNWs的物理/电学接触,提高FTE的机械性能和导电性能。基于该FTE制备的FOSCs实现了效率的大幅度提升,以PM6:BTP-eC9:PC71BM为活性层的小面积器件(0.062 cm2)效率达到了17.52%。重要的是,这种FTE的制备方法适用于大尺寸印刷,采用刮涂方法制备的1 cm2 FOSCs的PCE高达15.82%。 图1. (a)离子液体的结构式;(b-c)不同反应时间析出物的照片和XRD谱图,其中*和#分别为AgCl和Ag的特征峰;(d) PET/Em-Ag/AgNWs-IL FTE的SEM图像:白色框表示部分嵌入在PET衬底上的AgNWs,黄色框表示在AgNWs的结点处形成的颗粒 图2 (a)AgNWs结点FIB切割过程示意图;(b)AgNW结点的透射电镜剖面图和(c)EDS图谱;(d)图2b中标记区域1的透射电镜截面放大图像;(e)左:图2b中标记区域2的透射电镜截面放大图像;右:所选区域的HR-TEM图像 图3.(a)制备AgNWs FTE流程示意图;(b)Em-Ag/AgNWs-IL FTE(不含衬底)在不同浓度离子液体时的方块电阻、电导率和(c)透过光谱。附图: FTE在10 cm × 10 cm尺度下的照片;(d)FTE的FoM值 图4. (a)FOSCs结构示意图以及给体PM6与受体Y6、BTP-eC9和PC71BM的分子结构;(b)小面积FOSCs的J-V曲线;(c)大面积柔性透明电极透过率及面电阻均一性;(d)1cm2 FOSCs的J-V曲线;(e)FOSCs效率统计分布图 图5.(a)PET/Em-Ag/AgNWs和PET/Em-Ag/AgNWs-ILFTE的方块电阻随弯曲次数增加的变化趋势。插图:弯曲试验示意图;(b)PET/Em-Ag/AgNWs和PET/Em-Ag/AgNWs-IL FTE在剥离力作用下方块电阻的变化。插图:剥离试验示意图;(c)0.062-cm2 FOSCs经过6000次弯曲之后的PCE衰减;(d)0.062-cm2 FOSCs在1200次不同弯曲半径下弯曲循环后的相对PCE衰减;(e)1-cm2 FOSCs经过6000次弯曲的PCE衰减过程。插图: FOSCs在弯曲时的照片 综上所述,该工作在AgNWs结点实现了Ag+的可控还原,银纳米线与被还原银颗粒之间获得了原子级别的物理接触,在银纳米线间形成了“银纳米线—还原银—银纳米线”导电通道,制备的FTE同时具有高的电导率和透光率。相关研究工作对于推动高性能银纳米线电极的商业化有重要的意义,并有望进一步促进高性能、大面积柔性光电器件的发展。