《《细胞》封面:细胞感染新冠病毒后,会发生哪些变化?》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2020-08-07
  • 顶尖学术期刊《细胞》杂志以封面论文的形式,介绍了一项关于新冠病毒的大型研究。一支跨国团队发现,当细胞感染新冠病毒后,会出现诸多明显的变化。研究人员们同时发现,一些药物可以针对这些变化,从而有治疗新冠病毒感染的潜力。

    在论文中,科学家们指出,作为一类全新的冠状病毒,新冠病毒存在“无症状感染”现象,在症状出现之前,就可以具有传染性。而对于这种病毒在感染细胞后会引起怎样的变化,我们了解得还不够多。

    为此,这支大型团队决定使用基于质谱的定量磷酸蛋白组学(quantitative mass spectrometry-based phosphoproteomics)方法,研究新冠病毒在感染常见的细胞系后,细胞内的磷酸化进程是否会受到影响。磷酸化是细胞内信号通路的关键调控步骤。了解来自宿主和病毒的蛋白在感染后会如何被磷酸化,有望让我们了解疾病的病理发生。

    如同研究人员们所预计的那样,在病毒感染细胞后的不同时间点,不少蛋白的磷酸化出现了明显增加。这既包括了来自新冠病毒的蛋白,也包括了一些与新冠病毒蛋白发生互作的宿主蛋白。

    根据这些磷酸化位点的动态,研究人员们进一步将它们分为5个不同的组。有意思的是,各组都可以和病毒的生命周期挂起钩来——第一组会在感染的2小时内出现上调,与病毒进入细胞相关;第二组与病毒的复制和/或外出(egress)有关;第三第四组与RNA的加工有关,且会出现下调;第五组则与感染的反应有关。

    再具体看,在感染新冠病毒后,CK2与p38 MAPK会得到激活,多种细胞因子也会产生,最终关闭和有丝分裂有关的激酶,导致细胞周期的停止。此外,CK2也会促进细胞产生丝状伪足突起(filopodial protrusions),突起上带有正在出芽的病毒颗粒。这一瞬间也被科学家记录了下来,成为了本期的杂志封面。

    了解这些磷酸化的变化,又有什么用呢?根据负责磷酸化的激酶的活性变化,以及已知的药物作用机理,科学家们找到了87种不同的药物和化合物,有望成为潜在的新冠病毒感染药物。在这87款分子中,有10款已经得到了美国FDA的批准上市,还有53款已经位于临床试验之中。

    研究人员们一共测试了68款药物和化合物的抗病毒活性,并确认针对CK2、p38 MAPK信号通路、PIKEYVE、以及CDK的抑制剂有很强的抗病毒潜力,因此有望成为未来的潜在靶点。

  • 原文来源:http://news.bioon.com/article/6776868.html
相关报告
  • 《新冠重要发现:需警惕!多个研究团队发现,发生D614G突变的新冠病毒,感染人类细胞的能力或提高9倍左右》

    • 来源专题:中国科学院病毒学领域知识资源中心
    • 编译者:malili
    • 发布时间:2020-07-09
    • 自新冠疫情爆发以来,全世界的科学家都在密切关注新冠病毒的变异动向。 科学家注意到,携带D614G突变的新冠病毒毒株,自今年2月份出现以来,感染人数在全球范围内(尤其是欧美国家)一路飙升,现在已经取代2019年的原始毒株成为主流病毒株。 近日,美国两顶级研究机构对出现在S蛋白中的D614G变异做了初步研究,两篇还未经同行评审的研究论文几乎得出了相同的结论。 美国斯克利普斯研究所Hyeryun Choe和Michael Farzan领衔的研究团队12日发文称,在表达ACE2的人胚胎肾细胞的细胞系hACE2-293T中,S蛋白出现D614G变异的假病毒感染能力是没突变的9倍[1]。 三天之后,纽约基因组研究中心Neville E. Sanjana团队基于假病毒和人肺上皮细胞等细胞系,再次发现D614G变异让假病毒感染细胞的能力提升了8倍[2]。 基于以上研究,我们基本可以确定,新冠病毒S蛋白的D614G变异,会提升新冠病毒感染细胞的能力。不过,D614G变异是否会增强新冠病毒感染人的能力和毒性,目前仍然不能确定,需要更多的临床数据支撑。 S蛋白是新冠病毒打开人类细胞之门的钥匙,对新冠病毒的重要性不言而喻。 也正是因为S蛋白对新冠病毒极其重要,目前针对新冠病毒开发的疫苗和抗体类药物有很多是靶向新冠病毒S蛋白的。因此,S蛋白的变异动向,也关系到在研药物和疫苗的效果。故而,科学家对S蛋白那真是格外地关注。 实际上,从新冠疫情爆发以来,全世界各地的研究人员一直在给新冠病毒测序,并上传到特定的数据库,与全世界同行分享数据。从第一个新冠病毒基因上传至今,科学家已经在新冠病毒的基因组上发现了数百个变异。不过大部分是随机变异,没有给新冠病毒带去很大的变化。 新冠病毒S蛋白的D614G变异,引起了研究人员的关注。简单地讲,D614G变异就是新冠病毒第614位氨基酸由天冬氨酸(D)变成了甘氨酸(G),因此也有人把变异毒株叫做G614,老毒株叫做D614。 这个发生D614G变异的新冠病毒有多厉害呢?据统计,它从年初的0,到3月份的26%,4月份的65%,5月份的70%,在短短数月时间内,一跃成为世界主流病毒株。研究人员认为,这说明变异毒株G614比老毒株D614更有传播优势。 此外,有研究人员发现新冠病毒的这种变异,与患者的病毒载量增加有关[3]。还有科学家发现变异毒株G614的流行与患者的病死率增加有关[4],而且纽约基因组研究中心Sanjana团队在更大的人群中证实了变异毒株G614的流行与病死率之间有较小但显著的正相关性。 不过,上述现象究竟与S蛋白的D614G变异有没有关系,科学家还没有达成共识,因此需要先研究下D614G变异的功能。 为了确定D614G突变是否会改变S蛋白的特性,从而影响新冠病毒的传播或复制,斯克利普斯研究所Choe和Farzan领衔的研究团队评估了D614G在新冠病毒进入细胞中的作用。 基于假病毒(PV)研究平台,研究人员用G614和D614分别感染表达ACE2的人hACE2-293T细胞系和不表达ACE2的Mock-293T细胞系。 感染一天之后,研究人员发现G614感染hACE2-293T细胞的效率比D614高约9倍。 接下来要弄清楚的一个问题是,D614G突变究竟是如何改变病毒感染能力的。 Choe和他的同事们发现,D614G这个变异的位置很特殊,正处于S1和S2的中间。那这就有可能是D614G变异影响了S蛋白的断裂,以及S1的脱落。 循着这个思路,研究人员做了深入的研究,发现第614位氨基酸由天冬氨酸(D)变成了甘氨酸(G)之后,S1和S2之间变得更稳定了,S1确实更不容易脱落。而且从总体上看,G614病毒表面的完整S蛋白总量是D614病毒的4.7倍。 此外,D614G变异没有增强ACE2与S蛋白的亲和力。基于以上研究不难看出,D614G变异增加了病毒表面功能完整S蛋白的数量,进而增加了病毒与细胞结合的机会,提高了感染效率。 虽然D614G变异提高了病毒感染细胞的效率,但有个好消息是,Choe团队研究了康复者血浆中和病毒的能力,结果发现不同康复者的血浆均可很好地中和G614病毒和D614病毒。那些开发靶向S蛋白的疫苗和抗体药物的研发人员可以稍稍松口气了。 纽约基因组研究中心Sanjana团队的研究思路几乎与Choe团队的一致,同样是基于假病毒开展研究,只不过Sanjana团队研究的人类细胞系更多,有肺(A549-ACE2)、肝(Huh7.5-ACE2)和肠(Caco-2)。 与D614病毒相比,变异后的G614病毒的感染上述细胞的能力提升2.4-7.7倍。同样,Sanjana团队的研究结果也表明,这种感染能力的提升,是D614G变异让S蛋白在生产和病毒的组装过程中更稳定,导致病毒表面具有完整功能S蛋白数量更多带来的。 总的来说,这两个研究在新冠肺炎依旧流行的今天是重要的,它们证明了同一个问题:新冠病毒S蛋白的D614G变异,会增强新冠病毒感染细胞的能力。 不过,D614G变异是否会让新冠肺炎更容易人传人,甚至变得更严重,还需要更多的动物实验和临床数据支撑。在更多的数据出炉之前,我们不能基于这两个研究就认为发生D614G变异的新冠病毒的传染性变得更强了。 当然,我们也不能掉以轻心,毕竟D614G变异的新冠病毒在短短3个月,就成为席卷全球的第一大毒株。 (来源:奇点网) 参考文献: [1].Zhang L, Jackson C B, Mou H, et al. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity[J]. bioRxiv, 2020. [2].Daniloski Z, Guo X, Sanjana N, et al. The D614G mutation in SARS-CoV-2 Spike increases transduction of multiple human cell types[J]. bioRxiv, 2020. [3].Korber B, Fischer W, Gnanakaran S G, et al. Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2[J]. bioRxiv, 2020. [4].Becerra‐Flores M, Cardozo T. SARS‐CoV‐2 viral spike G614 mutation exhibits higher case fatality rate[J]. International Journal of Clinical Practice, 2020. 链接:https://mp.weixin.qq.com/s/zlnI03XJMUnctKv4EC0uzg 原文链接:http://www.chinacdc.cn/gwxx/202006/t20200622_217471.html
  • 《新冠病毒改变感染细胞RNA首次获证》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-11-11
    • 据物理学家组织网9日报道,通过分析研究病毒、人类和动物细胞RNA获得的13个数据集,巴西圣保罗联邦大学(UNIFESP)的科学家首次证明,新冠病毒会改变宿主细胞RNA的功能。相关论文发表于最新一期《细胞与感染微生物学前沿》杂志。   在本研究中,来自UNIFESP的科研团队通过直接RNA测序,检测了源于猴子的Vero细胞和源于人的Calu-3细胞的外转录组——细胞RNA生化修饰(如甲基化)的集合。他们通过分析细胞中存在的所有RNA,定位核苷酸每个区域甲基化的数量,定性地证明了感染细胞RNA的变化。   论文作者马塞卢·布里奥尼斯表示:“这项研究中,我们第一个重要发现是,与未感染细胞相比,感染新冠病毒增加了宿主细胞内m6a(N6甲基腺苷)的浓度——一种甲基化。”   研究人员解释道,m6a是最常见的RNA核苷酸修饰类型,且参与了细胞内定位和蛋白质翻译等几个重要的过程。甲基化是一种生物化学修饰,会改变蛋白质、酶、激素和基因的行为。“在病毒内,甲基化有两种功能:调节蛋白质表达,并保护病毒免受干扰素的作用。干扰素是宿主产生的一种有效的抗病毒物质。”   研究小组还发现,不同毒株核苷酸中的含氮碱基序列存在差异。布里奥尼斯说:“有些毒株可能比其他毒株甲基化程度更高。如果是这样,它们可以在宿主细胞内更好地增殖。”   在完成了新冠病毒如何修饰宿主细胞内m6A的研究后,科学家们计划进一步分析存储的数据,以寻找病毒RNA甲基化水平与每个感染细胞释放病毒数量——即病毒暴发规模之间的相关性。   布里奥尼斯表示:“病毒甲基化程度越高,病毒暴发的规模也就越大。这些发现为研究新冠肺炎新疗法和现有药物的重新利用奠定了基础,还有助于更深入地了解病毒株如何逃避免疫系统。”