《新冠病毒改变感染细胞RNA首次获证》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2022-11-11
  • 据物理学家组织网9日报道,通过分析研究病毒、人类和动物细胞RNA获得的13个数据集,巴西圣保罗联邦大学(UNIFESP)的科学家首次证明,新冠病毒会改变宿主细胞RNA的功能。相关论文发表于最新一期《细胞与感染微生物学前沿》杂志。

      在本研究中,来自UNIFESP的科研团队通过直接RNA测序,检测了源于猴子的Vero细胞和源于人的Calu-3细胞的外转录组——细胞RNA生化修饰(如甲基化)的集合。他们通过分析细胞中存在的所有RNA,定位核苷酸每个区域甲基化的数量,定性地证明了感染细胞RNA的变化。

      论文作者马塞卢·布里奥尼斯表示:“这项研究中,我们第一个重要发现是,与未感染细胞相比,感染新冠病毒增加了宿主细胞内m6a(N6甲基腺苷)的浓度——一种甲基化。”

      研究人员解释道,m6a是最常见的RNA核苷酸修饰类型,且参与了细胞内定位和蛋白质翻译等几个重要的过程。甲基化是一种生物化学修饰,会改变蛋白质、酶、激素和基因的行为。“在病毒内,甲基化有两种功能:调节蛋白质表达,并保护病毒免受干扰素的作用。干扰素是宿主产生的一种有效的抗病毒物质。”

      研究小组还发现,不同毒株核苷酸中的含氮碱基序列存在差异。布里奥尼斯说:“有些毒株可能比其他毒株甲基化程度更高。如果是这样,它们可以在宿主细胞内更好地增殖。”

      在完成了新冠病毒如何修饰宿主细胞内m6A的研究后,科学家们计划进一步分析存储的数据,以寻找病毒RNA甲基化水平与每个感染细胞释放病毒数量——即病毒暴发规模之间的相关性。

      布里奥尼斯表示:“病毒甲基化程度越高,病毒暴发的规模也就越大。这些发现为研究新冠肺炎新疗法和现有药物的重新利用奠定了基础,还有助于更深入地了解病毒株如何逃避免疫系统。”

  • 原文来源:http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2022-11/11/content_544255.htm?div=-1
相关报告
  • 《Cell:开发出病毒感染实时成像技术,从而实时监测细胞中的病毒感染》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-11-16
    • 在一项新的研究中,来自荷兰胡布勒支研究所和乌特勒支大学的研究人员开发出一种先进的技术,可以实时监测病毒感染。他们预计这种技术可用于研究多种病毒,包括导致目前大流行病的新冠病毒SARS-CoV-2。因此,这种被命名为病毒感染实时成像(virus infection real-time imaging, VIRIM)的技术对于深入了解病毒在人体中的感染情况非常有价值。最终,这可能为病毒感染带来更有针对性的治疗方法。相关研究结果于2020年11月13日在线发表在Cell期刊上,论文标题为“Translation and Replication Dynamics of Single RNA Viruses”。 病毒对社会产生了很大的负面影响。目前全球爆发的SARS-CoV-2对个人身心健康和经济造成的巨大后果再次证明了这一点。 入侵者 RNA病毒是一大类以RNA形式携带遗传信息的病毒,RNA是一种类似于DNA的分子。RNA病毒感染宿主细胞后,会劫持宿主细胞的许多功能,并将它变成一个病毒生产工厂。这样一来,这种病毒入侵者就可以迅速在有机体的细胞内进行复制。新的病毒颗粒随后通过呼吸道等地方释放出来,可以感染其他人。RNA病毒的例子包括冠状病毒、丙型肝炎病毒(HCV)、寨卡病毒和肠道病毒,其中肠道病毒包括引起普通感冒的鼻病毒、引起病毒性脑膜炎和脑炎的柯萨奇病毒以及引起麻痹性脊髓灰质炎的脊髓灰质炎病毒。 在此之前,现有的技术只能提供病毒感染细胞的快照。换句话说,科学家们可以观察到某个时间点的受感染细胞,但无法从头到尾监控病毒感染的过程。这种新开发的显微镜技术VIRIM改变了这一点:胡布勒支研究所的Marvin Tanenbaum及其团队和乌特勒支大学的Frank van Kuppeveld及其团队开发出这种先进的方法,有了这种方法,可以在实验室里非常精确地可视化观察病毒感染的整个过程。论文第一作者Sanne Boersma说,“这种新方法使得我们能够解决许多关于病毒的重要问题。” 经过荧光标记的病毒 这种方法在肠道病毒中使用了SunTag--一种由Tanenbaum先前开发的技术,van Kuppeveld在这组病毒中拥有丰富的专业知识。SunTag被引入到病毒的RNA中,用一种非常明亮的荧光标签来标记病毒蛋白。通过使用这种荧光标签,可以用显微镜观察病毒蛋白,这使得人们能够看到病毒何时、何地、如何快速地产生它的蛋白并在其宿主细胞中复制。VIRIM比其他方法灵敏得多:可以检测到单个病毒RNA产生的蛋白。这使得人们可以从一开始就追踪病毒感染的过程。 竞争 细胞在感染病毒后,利用自己的防御系统来检测和消灭病毒。一旦病毒进入细胞,病毒和宿主细胞之间就会产生竞争:病毒的目的是劫持细胞进行自我复制,而宿主则极力阻止这一点。利用VIRIM,这些研究人员能够观察到这种竞争的结果。他们发现,在一个细胞亚群中,宿主细胞赢得了竞争。Boersma说,“这些宿主细胞被病毒感染了,但病毒不能复制。”这引发了Boersma和她的同事们的好奇心,并促成了一项新的实验。 病毒的致命弱点 这些研究人员通过增强宿主细胞的防御系统来帮助它们。结果发现,在这种防御系统实现增强的细胞中,第一次的病毒复制往往就失败了,这使得病毒无法接管宿主。Boersma解释道,“复制过程中的第一步是病毒的致命弱点:这个时刻决定着病毒是否能进一步传播。如果宿主细胞在感染之初没有设法消除病毒,那么病毒就会复制并赢得竞争。”Boersma和她的同事们使用了一种微小核糖核酸病毒(picorna)来测试VIRIM。这个病毒科的成员可以引起从普通感冒到小儿麻痹症等严重疾病。 VIRIM能够识别多种病毒的脆弱阶段。这些研究人员期望该技术对研究包括SARS-CoV-2在内的许多威胁生命的病毒有价值。Boersma解释说,“了解病毒的复制和传播可以帮助我们确定病毒的致命弱点。这些知识可以促进治疗方法的开发,比如,在病毒生命的脆弱时刻进行干预的治疗方法。这使得我们能够开发出更有效的治疗方法,并有望减轻病毒对社会的影响。”
  • 《新冠病毒感染细胞关键机制找到》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-05-12
    • 在发表于10日《自然·通讯》上的一项研究中,比利时研究人员在分子水平上了解新冠病毒感染细胞的确切机制,并在实验中阻止了病毒感染。该发现为治疗新冠带来了巨大的希望:有助于开发一种气溶胶形式的抗病毒药物,在感染或高风险接触的情况下能根除病毒。   鲁汶大学生物分子科学与技术研究所研究员大卫·阿尔斯滕斯团队研究了唾液酸(存在于细胞表面的一种糖残基)和新冠病毒刺突蛋白之间的相互作用,目的是了解唾液酸在病毒感染过程中的作用。   研究人员已知细胞表面被糖所包裹,这些糖使病毒更容易识别细胞,并促进病毒进入宿主细胞,进而引发感染。   此次,研究人员首先确定了这些糖的一种变体(9-O-乙酰化),它与刺突蛋白的相互作用比其他糖更强烈。简而言之,他们找到了能让病毒打开宿主细胞“大门”的那套钥匙。   为什么是一套钥匙?因为新冠病毒由一系列具有吸盘效应的刺突蛋白组成,并使它们能够与细胞结合并最终进入细胞。病毒发现的钥匙越多,与细胞的互动就越好,“大门”就会开得越大。   研究人员的第二个发现是:通过阻止病毒与宿主细胞结合来防止感染。他们阻断了刺突蛋白的附着点,从而抑制病毒与细胞表面的任何相互作用。这就好比细胞“大门”前上了一把挂锁。不过,前提条件之一是病毒和阻断它的试剂之间的相互作用比病毒和细胞之间的作用更强。在这个特殊的案例中,科学家们证明了表面带有多个9-O-乙酰化唾液酸的多价结构(或糖簇)能够阻止新冠病毒的结合和感染。如果病毒不附着在细胞上,它就无法进入细胞,因此会死亡,寿命为1至5小时。这种阻断作用可防止感染。   在新冠肺炎大流行的背景下,各种疫苗主要针对新冠病毒变异体,而不是整个病毒。鲁汶大学的这一发现具有作用于病毒的优势,不受其突变影响。   下一步,研究小组将在老鼠身上进行测试,以应用这种阻断病毒结合部位的方法,并观察其是否对生物体发挥作用。结果一旦出来,就可推进开发出一种基于9-O-乙酰化的抗病毒药物,可在感染或高危接触的情况下,通过气雾剂给药。 【总编辑圈点】   这是一项关于病毒入侵机理的基础研究。科研人员试图弄清楚唾液酸和新冠病毒刺突蛋白之间的相互作用。细胞表面的糖可以让细胞更容易被病毒识别,而糖的一种变体与刺突蛋白互动得更好。当所有糖摆在病毒面前时,病毒会优先选择这一变体,这也为抗病毒药物的研发提供了新的路径——让病毒和基于该变体的抗病毒药物结合,而非细胞本身。下一步,科研人员将在实验动物上进行测试。至于开发气雾剂给药的抗病毒方式,目前看来还需要一定时日。