《日本产业技术综合研究所(AIST)参与世界首个规定微米级微孔尺寸评定方法的行业标准》

  • 编译者: 李晓萌
  • 发布时间:2024-07-06
  • 近日,日本产业技术综合研究所(AIST)工学测量标准研究部门吉田肇上级主任研究员和梶川宏明研究小组长以及一般社团法人日本计量机器工业联合会(以下简称“计工连”)在民间企业、业界团体、大学的协助下,致力于确认密封检查的可靠性的业界规格的制作。其成果将作为计工联标准JMIF022《密封检查用参照试验片的评价方法和使用方法》于2024年5月24日发布,这是世界首个规定微米级微孔尺寸评定方法的行业标准,为提高汽车、能源、食品、医药品等广泛行业密封产品的可靠性和生产效率做出贡献。在制定这个标准的时候,利用AIST开发的“气体流动统一式”分析了流经微小孔的复杂气体流动。
相关报告
  • 《日本产业技术综合研究所(AIST)开发了可以精确测量工业机械零件形状的新技术》

    • 编译者:张宇
    • 发布时间:2024-11-11
    • 近日,研究员渡边栗仁、研究组组长佐藤修、松崎和也、高级研究员宇岛麻理子、副研究部余一渡边司和日本产业技术综合研究所(AIST)名誉研究员 Toshiyuki Takatsuji 共同开发了一种可以精确测量工业机械零件弯曲形状参数的技术。 一些工业机械零件需要以微米级的精度进行加工。例如,在发电机和引擎中使用的涡轮叶片,如果存在制造误差,即使是与设计形状最微小的偏差,它不仅会影响发电效率和旋转效率,而且可能成为运行时故障的原因。 因此,需要使用三维坐标测量机(Coordinate Measuring Machine; CMM)精密评估成型零件的形状。然而,当使用接触式CMM测量具有毫米以下曲率半径的曲面形状时,由于使用半径约为 1 毫米的有限尺寸的探针球进行测量的缘故,可能会出现几微米的误差。 现在研究人员开发了一种技术,通过将图像处理中的噪声去除和用于表面粗糙度测量的形态学处理方法应用于接触式CMM测量,将测量的变异性降低到亚微米级。此外,我们将这项技术应用于涡轮叶片的断面形状测量,并证实了测量变异性的降低。预计这将提高工业机械零件形状评估的可靠性,并有助于保证零件加工质量的精度和安全性等。 一些工业机械零件的形状会影响工业机械的整体性能。特别是小型零件,往往需要以微米级的精度进行加工。例如,涡轮叶片不仅表面需要光滑,而且边缘的形状也会极大地影响通过涡轮机的气体流动。 如果与理想设计形状的偏差过大,气体的流动就会受到干扰,不仅会降低涡轮的发电效率和旋转效率,还可能引起叶片损坏等问题。因此,工业机械零件的形状评估对于保证以安全性为基础的工业机械性能至关重要。 对于工业机械零件的形状评估,通常使用CMM(坐标测量机)。特别是接触式CMM因其高精度和能够测量复杂形状而被广泛使用。然而,如果评估对象包含曲率半径较小的形状,传统方法可能会错误地估计接触式 CMM 的探针球半径校正方向,导致测量变异性达到几微米,从而得到与实际形状不符的测量结果。为了确保工业机械的安全性,必须评估加工精度是否满足要求。因此,由于测量值的变化,即使实际上是符合的形状也可能被评估为不符合,这可能会导致不必要的成本增加。 AIST一直致力于确保工业机械零件等三维形状测量的准确性,并已经开发了评估齿轮形状测量精度的方法和评估3D打印机成型精度的方法。此外,近年来,随随着汽车产业质量管理系统标准IATF16949的发布,对工业机械零件的质量要求变得越来越严格。因此,研究所扩大了测量对象,包括涡轮叶片等各种各样的工业机械零件,并一直在推进技术开发以提高形状测量的可靠性。 为了确保工业机械零件的加工精度,需要使用接触式 CMM 进行高精度地形状评估。 特别是曲率半径小的曲面形状变化很大,因此需要以密集的间隔进行测量。 在使用接触式CMM进行测量时,会获取探针球接触被测物时的中心位置。 在传统方法中,通过计算垂直于连接相邻探针球中心位置的直线或平面的方向来估计探针球半径需要校正的方向,并在该方向上进行探针半径校正。然而,由于接触式三坐标测量机的机械误差导致采集的探针球的中心位置包含亚微米级的噪声,相邻探针球中心位置构成的直线会倾斜,补偿探针半径的方向也会偏移,导致测量偏差可能会达到几微米。 此时,测量曲率半径为几毫米或更小的曲面形状的间隔越细密,相邻探针球中心位置形成的直线偏差就越大。 因此,AIST开发了一种方法,将图像处理和表面粗糙度测量中使用的形态学处理应用于接触式CMM的测量值,并修正探针半径。在形态学处理中,通过向图像数据中添加或删减某些特定形状(例如圆形),进行去除噪声或强调轮廓的处理。在本研究中,假设探针球是一个完美的圆,研究人员通过计算从探针球中心位置生成的与圆形形状相切的曲线来估计被测物体的形状。新方法与传统方法的不同之处在于,它消除了在探针球通过的区域内需要进行探针半径校正的步骤,从而减少了测量数据的误差。 此次开发的接触式 CMM 测量的探头半径校正方法,除了用于涡轮叶片之外,还可以用于工业机械部件的形状评估。为了实现更精确的零部件形状评估,研究人员将进一步拓展该项目的研究成果,假设探针球不是一个完美的圆,并将探针球的实际形状纳入计算中,以进一步提高弯曲形状的测量精度。 这项研究成果的详细说明已于2024年9月11日在《Precision Engineering》上在线发表。(DOI:10.1016/j.precisioneng.2024.09.009)
  • 《日本产业技术综合研究所(AIST)开发纳米材料的多模测量方法》

    • 编译者:李晓萌
    • 发布时间:2024-08-20
    • 近日,日本产业技术综合研究所(以下简称“产总研”)物质测量标准研究部门纳米材料结构分析研究小组白泽彻郎高级主任研究员、国立大学法人东京学艺大学教育学部Voegeli Wolfgang准教授及荒川悦雄教授,利用由放射光X射线产生的虹色X射线(波长分散聚焦X射线),开发了同时高速测量X射线散射和X射线吸收光谱的技术。 通过该技术的开发,成功地同时获得了左右纳米材料功能的纳米级结构(粒子的尺寸和形状),以及原子级结构(原子间距离、配位数、化学状态)的信息。 利用这项技术,可以观察到从原子尺度到纳米尺度的多个信息之间的相关性,这在以往的个别测量中是困难的,通过将其结果与功能信息进行对照,可以详细了解结构和功能的因果关系。将这些信息运用到多模态分析中,对纳米材料的功能进行最大化的结构和新功能的预测,可以期待对材料开发的革新做出贡献。 另外,该技术的详细内容于2024年6月25日在线刊登在英国《Physical Chemistry Chemical Physics》期刊上(DOI:https://doi.org/10.1039/D4CP01399A)。