《用于添加剂制造的热固性热固性聚合物材料》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2018-11-28
  • 该技术利用纳米材料提供了聚合物系统的按需热固化,从而有效地将光转化为热。这种转化在纳米级材料附近产生极端温度,极大地提高了聚合速率,使聚合速率提高了10亿倍,同时对最终产物保持了所需的化学控制。

    为了充分发挥增材制造(AM)在任何市场的潜力,获得充足的材料是非常重要的。塑料是传统制造业的一个重要领域,也是AM的一个重要目标。我们的工作集中在一类塑料上——热固化热固性聚合物。这类材料是由相互缠绕的聚合物链构成的致密网络制成的,具有优异的热稳定性和化学稳定性,在工业、医疗和国防领域具有非常理想的性能。然而,固化热固性材料的方法还没有很好地适应于AM所需的快速起止固化循环。我们的技术提供了一种新的固化热固性材料的方法,允许热固性材料用于AM。该技术利用纳米颗粒的光热效应,提供了在时间和空间精确控制聚合所需的快速加热和冷却循环,使热固性热固性材料的添加剂制造成为可能。到目前为止,我们已经证明了我们的技术为PDMS的固化速度提供了数十亿倍的提高,使我们能够在时间尺度上以微秒的顺序固化这些系统。

    ——文章发布于2018年11月26日

相关报告
  • 《Nature Communications: 用于可持续3D打印的可再处理热固性光敏材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-05-23
    • 3D打印作为一种功能强大的快速成型技术,具备制备复杂三维几何形状的能力。该技术现已广泛应用于包括组织工程、软体机器人、纳米器件、光学工程、超材料等领域。对比与其他3D打印材料,热固性光敏3D打印材料因其优秀的高温力学稳点性、耐化学性以及与高精度3D打印系统良好的兼容性,几乎占据了3D打印材料市场的半壁江山。然而,因为光聚合反应所形成的共价键网络往往是永久性的,这使得使用现有热固性光敏3D打印材料所打印得到的三维结构不具备再处理,也就是再塑形、再修复和再回收的能力。因此,伴随着全球3D打印材料爆发式的增长,热固性光敏3D打印材料的不可再处理性将导致大量的材料浪费和严重的环境影响。 成果简介 为了解决这一挑战,近日,新加坡科技设计大学(Singapore University of Technology and Design, SUTD)数字制造和设计中心(Digital Manufacturing and Design Center, DManD)葛锜助理教授、Martin Dunn教授(共同通讯作者)和张彪博士(第一作者)在Nature Communications上发表了一篇题为“Reprocessable thermosets for sustainable three-dimensional printing”的文章。文章介绍了该科研团队基于两步聚合策略开发的一种可再处理热固性光敏3D打印材料(3D Printing Reprocessable Thermoset-3DPRT)。在制备的3DPRT树脂溶液中,丙烯酸酯官能团的紫外光敏性使其适用于基于紫外光固化的3D打印技术,从而使得3DPRT可用来打印高精度复杂三维结构。而羟基和酯基官能团在高温下发生的酯交换反应赋予了打印结构可再处理性。利用这种可再处理热固性光敏树脂打印出的结构具备再塑形,再修复和再回收的能力。 这种通过两步聚合策略开发的可再处理热固性光敏3D打印材料不仅允许用户对3D打印结构进行再塑形,还可以通过在损坏界面上直接3D打印来修复破坏的零件。此外,废弃的零件可以通过酯交换反应再回收并用于其他应用。总之,这种可再处理热固性材料赋予3D打印结构再塑形性,再修复性和再回收性,有助于缓解由于3D打印材料消耗量持续增加而带来的环境挑战。 文献链接:Reprocessable thermosets for sustainable three-dimensional printing (Nat. Commun. 2018, DOI: 10.1038/s41467-018-04292-8)。
  • 《MIT研发新方法 让用于汽车等产品的热固性塑料易被分解回收》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-08-24
    • 热固性材料包含环氧树脂、聚氨酯以及用于轮胎的橡胶,在汽车和电器等很多需要耐用性和耐热性能的产品中都有。不过,此种材料有一个缺点,在使用之后,不易被回收或分解,因为将它们连接在一起的化学键比其他材料(如热塑性塑料)更强。 据外媒报道,美国麻省理工学院(MIT)的化学家们现在研发了一种方法,可以采用一种化学连接器,让此类材料更容易被分解,同时仍能保持机械强度,以便再次投入使用。 研究人员表示,他们研发了一种称为pDCPD的可降解热固性塑料,可被分解成粉末,然后利用此类粉末制造更多的pDCPD。研究人员还提出一个理论模型,表明其方法可广泛应用于塑料和其他聚合物,如橡胶。 难以回收 热固性塑料和热塑性塑料是两大塑料。热塑性塑料包括聚乙烯和聚丙烯,通常用于塑料袋和其他一次性塑料,如食品包装袋。通过加热小的塑料颗粒,直至融化,再将其塑成所需的形状,最后冷却成固体,可制造出热塑性塑料。热塑性塑料约占全球塑料产量的75%,可通过再次加热直到变成液体,得以回收,从而可被重塑成新的形状。 热固性塑料也采用类似工艺制成,但是一旦从液体冷却成固体,就很难再回复到液体状态。这是因为聚合物分子之间形成的称为共价键的化学键,具有很强的化学附着力,很难被打破。研究人员表示,在被加热时,热固性塑料在成型之前通常会燃烧起来。“一旦它们被固定为一个特定的形状,就会一辈子保持这个形状,通常也没有简单的方法来进行回收。” MIT研究小组想要研发一种方法,既可以保持热固性塑料的强度和耐用性的优点,同时在使用后还可以更容易被分解。 去年,研究人员报道了一种方法,可通过加入含有硅醚基团的构建块或单体,生产用于药物输送系统的可降解聚合物。此种单体随机分布在整个材料中,而且当材料暴露在酸、碱或离子(如氟化物)中时,硅醚键就会断裂。 用于合成此类聚合物的化学反应也被用于制造一些热固性塑料,包括卡车和公交车车身面板的聚二环戊二烯(polydicyclopentadiene,pDCPD)。 研究人员采用了与2019年相同的策略,将硅醚单体添加到形成pDCPD的液体前体中,结果发现,如果硅醚单体占整个材料的7.5%至10%,pDCPD就可保持机械强度,但在接触到氟离子后就可以分解成可溶解的粉末。 新材料 在研究的第二阶段,研究人员试图重复使用此类粉末以形成一种新型pDCPD材料。在将该粉末溶解在用于制造pDCPD的前体溶剂中后,就能够利用回收的粉末制造新型pDCPD热固性塑料。 研究人员表示,如果可以为其他类型的聚合反应找到合适的可降解单体,此种方法也可用于制造其他可降解的热固性材料,如丙烯酸、环氧树脂、硅酮或硫化橡胶。 现在,研究人员们希望可以成立一家公司,将该技术实现商业化。MIT还向默克密理博(Millipore Sigma)独家授权了该项技术,以生产和销售用于研究的硅醚单体。