《Phonon transport in vacancy induced defective stanene/hBN van der Waals heterostructure》

  • 来源专题:现代化工
  • 编译者: 武春亮
  • 发布时间:2024-07-28




















  • Skip to content

    Accessibility Links

    Skip to content
    Skip to search IOPscience
    Skip to Journals list
    Accessibility help









    IOP Science home





    Accessibility Help







    Search


    Journals


    Journals list
    Browse more than 100 science journal titles


    Subject collections
    Read the very best research published in IOP journals


    Publishing partners
    Partner organisations and publications


    Open access
    IOP Publishing open access policy guide


    IOP Conference Series
    Read open access proceedings from science conferences worldwide




    Books


    Publishing Support



    Login

    IOPscience login / Sign Up








    Close

    Click here to close this panel.



    Search all IOPscience content








    Article Lookup

    Select journal (required)

    Select journal (required)2D Mater. (2014 - present)Acta Phys. Sin. (Overseas Edn) (1992 - 1999)Adv. Nat. Sci: Nanosci. Nanotechnol. (2010 - present)Appl. Phys. Express (2008 - present)Biofabrication (2009 - present)Bioinspir. Biomim. (2006 - present)Biomed. Mater. (2006 - present)Biomed. Phys. Eng. Express (2015 - present)Br. J. Appl. Phys. (1950 - 1967)Chin. J. Astron. Astrophys. (2001 - 2008)Chin. J. Chem. Phys. (1987 - 2007)Chin. J. Chem. Phys. (2008 - 2012)Chinese Phys. (2000 - 2007)Chinese Phys. B (2008 - present)Chinese Phys. C (2008 - present)Chinese Phys. Lett. (1984 - present)Class. Quantum Grav. (1984 - present)Clin. Phys. Physiol. Meas. (1980 - 1992)Combustion Theory and Modelling (1997 - 2004)Commun. Theor. Phys. (1982 - present)Comput. Sci. Discov. (2008 - 2015)Converg. Sci. Phys. Oncol. (2015 - 2018)Distrib. Syst. Engng. (1993 - 1999)ECS Adv. (2022 - present)ECS Electrochem. Lett. (2012 - 2015)ECS J. Solid State Sci. Technol. (2012 - present)ECS Sens. Plus (2022 - present)ECS Solid State Lett. (2012 - 2015)ECS Trans. (2005 - present)EPL (1986 - present)Electrochem. Soc. Interface (1992 - present)Electrochem. Solid-State Lett. (1998 - 2012)Electron. Struct. (2019 - present)Eng. Res. Express (2019 - present)Environ. Res. Commun. (2018 - present)Environ. Res. Lett. (2006 - present)Environ. Res.: Climate (2022 - present)Environ. Res.: Ecology (2022 - present)Environ. Res.: Energy (2024 - present)Environ. Res.: Food Syst. (2024 - present)Environ. Res.: Health (2022 - present)Environ. Res.: Infrastruct. Sustain. (2021 - present)Eur. J. Phys. (1980 - present)Flex. Print. Electron. (2015 - present)Fluid Dyn. Res. (1986 - present)Funct. Compos. Struct. (2018 - present)IOP Conf. Ser.: Earth Environ. Sci. (2008 - present)IOP Conf. Ser.: Mater. Sci. Eng. (2009 - present)IOPSciNotes (2020 - 2022)Int. J. Extrem. Manuf. (2019 - present)Inverse Problems (1985 - present)Izv. Math. (1993 - present)J. Breath Res. (2007 - present)J. Cosmol. Astropart. Phys. (2003 - present)J. Electrochem. Soc. (1902 - present)J. Geophys. Eng. (2004 - 2018)J. High Energy Phys. (1997 - 2009)J. Inst. (2006 - present)J. Micromech. Microeng. (1991 - present)J. Neural Eng. (2004 - present)J. Nucl. Energy, Part C Plasma Phys. (1959 - 1966)J. Opt. (1977 - 1998)J. Opt. (2010 - present)J. Opt. A: Pure Appl. Opt. (1999 - 2009)J. Opt. B: Quantum Semiclass. Opt. (1999 - 2005)J. Phys. A: Gen. Phys. (1968 - 1972)J. Phys. A: Math. Gen. (1975 - 2006)J. Phys. A: Math. Nucl. Gen. (1973 - 1974)J. Phys. A: Math. Theor. (2007 - present)J. Phys. B: At. Mol. Opt. Phys. (1988 - present)J. Phys. B: Atom. Mol. Phys. (1968 - 1987)J. Phys. C: Solid State Phys. (1968 - 1988)J. Phys. Commun. (2017 - present)J. Phys. Complex. (2019 - present)J. Phys. D: Appl. Phys. (1968 - present)J. Phys. E: Sci. Instrum. (1968 - 1989)J. Phys. Energy (2018 - present)J. Phys. F: Met. Phys. (1971 - 1988)J. Phys. G: Nucl. Part. Phys. (1989 - present)J. Phys. G: Nucl. Phys. (1975 - 1988)J. Phys. Mater. (2018 - present)J. Phys. Photonics (2018 - present)J. Phys.: Condens. Matter (1989 - present)J. Phys.: Conf. Ser. (2004 - present)J. Radiol. Prot. (1988 - present)J. Sci. Instrum. (1923 - 1967)J. Semicond. (2009 - present)J. Soc. Radiol. Prot. (1981 - 1987)J. Stat. Mech. (2004 - present)JoT (2000 - 2004)Jpn. J. Appl. Phys. (1962 - present)Laser Phys. (2013 - present)Laser Phys. Lett. (2004 - present)Mach. Learn.: Earth (2025 - present)Mach. Learn.: Eng. (2025 - present)Mach. Learn.: Health (2025 - present)Mach. Learn.: Sci. Technol. (2019 - present)Mater. Futures (2022 - present)Mater. Quantum. Technol. (2020 - present)Mater. Res. Express (2014 - present)Math. USSR Izv. (1967 - 1992)Math. USSR Sb. (1967 - 1993)Meas. Sci. Technol. (1990 - present)Meet. Abstr. (2002 - present)Methods Appl. Fluoresc. (2013 - present)Metrologia (1965 - present)Modelling Simul. Mater. Sci. Eng. (1992 - present)Multifunct. Mater. (2018 - 2022)Nano Ex. (2020 - present)Nano Futures (2017 - present)Nanotechnology (1990 - present)Network (1990 - 2004)Neuromorph. Comput. Eng. (2021 - present)New J. Phys. (1998 - present)Nonlinearity (1988 - present)Nouvelle Revue d'Optique (1973 - 1976)Nouvelle Revue d'Optique Appliquée (1970 - 1972)Nucl. Fusion (1960 - present)PASP (1889 - present)Phys. Biol. (2004 - present)Phys. Bull. (1950 - 1988)Phys. Educ. (1966 - present)Phys. Med. Biol. (1956 - present)Phys. Scr. (1970 - present)Phys. World (1988 - present)Phys.-Usp. (1993 - present)Physics in Technology (1973 - 1988)Physiol. Meas. (1993 - present)Plasma Phys. Control. Fusion (1984 - present)Plasma Physics (1967 - 1983)Plasma Res. Express (2018 - 2022)Plasma Sci. Technol. (1999 - present)Plasma Sources Sci. Technol. (1992 - present)Proc. Phys. Soc. (1926 - 1948)Proc. Phys. Soc. (1958 - 1967)Proc. Phys. Soc. A (1949 - 1957)Proc. Phys. Soc. B (1949 - 1957)Proc. Phys. Soc. London (1874 - 1925)Proc. Vol. (1967 - 2005)Prog. Biomed. Eng. (2018 - present)Prog. Energy (2018 - present)Public Understand. Sci. (1992 - 2002)Pure Appl. Opt. (1992 - 1998)Quantitative Finance (2001 - 2004)Quantum Electron. (1993 - present)Quantum Opt. (1989 - 1994)Quantum Sci. Technol. (2015 - present)Quantum Semiclass. Opt. (1995 - 1998)Rep. Prog. Phys. (1934 - present)Res. Astron. Astrophys. (2009 - present)Research Notes of the AAS (2017 - present)RevPhysTech (1970 - 1972)Russ. Chem. Rev. (1960 - present)Russ. Math. Surv. (1960 - present)Sb. Math. (1993 - present)Sci. Technol. Adv. Mater. (2000 - 2015)Semicond. Sci. Technol. (1986 - present)Smart Mater. Struct. (1992 - present)Sov. J. Quantum Electron. (1971 - 1992)Sov. Phys. Usp. (1958 - 1992)Supercond. Sci. Technol. (1988 - present)Surf. Topogr.: Metrol. Prop. (2013 - present)Sustain. Sci. Technol. (2024 - present)The Astronomical Journal (1849 - present)The Astrophysical Journal (1996 - present)The Astrophysical Journal Letters (2010 - present)The Astrophysical Journal Supplement Series (1996 - present)The Planetary Science Journal (2020 - present)Trans. Amer: Electrochem. Soc. (1930 - 1930)Trans. Electrochem. Soc. (1931 - 1948)Trans. Opt. Soc. (1899 - 1932)Transl. Mater. Res. (2014 - 2018)Waves Random Media (1991 - 2004)

    Volume number:

    Issue number (if known):

    Article or page number:





















    Nanotechnology


















    Purpose-led Publishing is a coalition of three not-for-profit publishers in the field of physical sciences: AIP Publishing, the American Physical Society and IOP Publishing.
    Together, as publishers that will always put purpose above profit, we have defined a set of industry standards that underpin high-quality, ethical scholarly communications.
    We are proudly declaring that science is our only shareholder.















    ACCEPTED MANUSCRIPT




    Phonon transport in vacancy induced defective stanene/hBN van der Waals heterostructure


    Mehady Hassan1, Priom Das2, Plabon Paul3, AKM Monjur Morshed4 and Titan C Paul5




    Accepted Manuscript online 25 July 2024
    ?



    © 2024 IOP Publishing Ltd



    What is an Accepted Manuscript?




    DOI 10.1088/1361-6528/ad6775

    Download Accepted Manuscript PDF















    Figures

    Skip to each figure in the article




    Tables

    Skip to each table in the article




    References





    Citations





    Article data

    Skip to each data item in the article

    What
    is article data?



    Open science






















    Article metrics














    Submit

    Submit to this Journal




    Permissions

    Get permission to re-use this article




    Share this article































    Article and author information




    Author e-mailsmonjur_morshed@me.buet.ac.bd
    Author affiliations1
    Bangladesh University of Engineering and Technology Faculty of Mechanical Engineering, ME Department, BUET, Dhaka, Dhaka District, 1000, BANGLADESH
    2 Mechanical Engineering, Bangladesh University of Engineering and Technology Faculty of Mechanical Engineering, EME Building, BUET Dhaka, Dhaka, Dhaka District, 1000, BANGLADESH
    3 Mechanical Engineering, Bangladesh University of Engineering and Technology Faculty of Mechanical Engineering, EME Building, BUET, Dhaka, Dhaka, Dhaka Division, 1000, BANGLADESH
    4 Mechanical Engineering, Bangladesh University of Engineering and Technology Faculty of Mechanical Engineering, 201 EME Building, BUET, Dhaka, Dhaka, Dhaka Division, 1000, BANGLADESH
    5 Mathematical Sciences, University of South Carolina Aiken, PEN 219A, Aiken, SC, Aiken, South Carolina, 29801-6389, UNITED STATES

    ORCID iDsMehady Hassan https://orcid.org/0009-0009-2273-798XAKM Monjur Morshed https://orcid.org/0000-0001-7264-6204


    Dates

    Received 19 March 2024
    Revised 16 July 2024
    Accepted 25 July 2024
    Accepted Manuscript online 25 July 2024







    Peer review information

    Method: Double-anonymous


    Revisions: 2
    Screened for originality? Yes


















    Journal RSS





    Sign up for new issue notifications










    10.1088/1361-6528/ad6775

    Abstract



    In this study, Non-Equilibrium Molecular Dynamics (NEMD) simulation is employed to investigate the phonon thermal conductivity (PTC) of Sn/hBN van der Waals heterostructures with different vacancy-induced defects. We deliberately introduce three types of vacancies in Sn/hBN bilayer point vacancies, bivacancies, and edge vacancies at various concentrations ranging from 0.25% to 2%, to examine their effects on PTC across temperatures from 100K to 600K. The key findings of our work are (i) PTC declines monotonically with increasing vacancy concentration for all types of vacancies, with a maximum reduction of ~62% observed at room temperature compared to its pristine form. (ii) The position of defects has an impact on PTC, with a larger decrease observed when defects are present in the hBN layer and a smaller decrease when defects are in the Sn layer. (iii) The type of vacancy also influences PTC, with point vacancies causing the most substantial reduction, followed by bivacancies, and edge vacancies having the least effect. A 2% defect concentration results in a ~62% decrease in PTC for point vacancies, ~51% for bivacancies, and ~32% for edge vacancies. (iv) Finally, our results indicate that for a given defect concentration, PTC decreases as temperature increases. The impact of temperature on thermal conductivity is less pronounced compared to the effect of vacancies for the defective Sn/hBN bilayer. The presence of vacancies and elevated temperatures enhance phonon-defect and phonon-phonon scattering, leading to changes in the phonon density of states (PDOS) profile and the distribution of phonons across different frequencies of Sn/hBN bilayer, thus affecting its thermal conductivity. This work offers new insights into the thermal behavior of vacancy-filled Sn/hBN heterostructures, suggesting potential pathways for modulating thermal conductivity in bilayer van der Waals heterostructures for applications in thermoelectric, optoelectronics, and nanoelectronics in future.




    Export citation and abstract

    BibTeX
    RIS







    During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.


    As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.


    After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0


    Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.





















    Back to top









    10.1088/1361-6528/ad6775

    You may also like

    Journal articles



    VO2-enhanced double positive temperature coefficient effects of high density polyethylene/graphite composites


    Evaluation of Current, Future, and Beyond Li-Ion Batteries for the Electrification of Light Commercial Vehicles: Challenges and Opportunities


    Double-layered thin collector in n-type metal-base organic transistors


    Comparative assessment of thermal oils and water as working fluids in parabolic trough collectors for enhanced solar power generation


    A Kinetic Study of the Platinum/Carbon Anode Catalyst for Vanadium Redox Flow Battery


    Effect of the Addition of Conductive Material to Positive Temperature Coefficient Cathodes of Lithium-Ion Batteries



































    IOPscience


    Journals


    Books


    IOP Conference Series


    About IOPscience


    Contact Us


    Developing countries access


    IOP Publishing open
    access policy


    Accessibility




    IOP Publishing


    Copyright 2024 IOP Publishing


    Terms and Conditions


    Disclaimer


    Privacy
    and Cookie Policy




    Publishing Support


    Authors


    Reviewers


    Conference
    Organisers












    This site uses cookies. By continuing to use this
    site you agree to our use of cookies.



    IOP Publishing Twitter page






    IOP Publishing Facebook page






    IOP Publishing LinkedIn page






    IOP Publishing Youtube page






    IOP Publishing WeChat QR code






    IOP Publishing Weibo page























  • 原文来源:https://iopscience.iop.org/article/10.1088/1361-6528/ad6775
相关报告
  • 《【文献】Advanced Science| Unipolar Barrier Photodetectors Based on Van Der Waals Heterostructure with Ultra-High Light On/Off Ratio and Fast Speed》

    • 来源专题:光电信息技术
    • 编译者:王靖娴
    • 发布时间:2025-01-20
    • 【内容概述】该研究介绍了一种基于范德华异质结构(vdW heterostructure)的单极势垒光电探测器,其核心结构为多层石墨烯(G)、二硒化钨(WSe?)和二硒化铂(PtSe?)组成的G-WSe?-PtSe?异质结构。该器件实现了极高的光开关比(约10?)、超快响应速度(上升时间699纳秒,衰减时间452纳秒)以及高达4.87%的光电转换效率,并且在室温下展现出从紫外(365纳米)到长波红外(10.6微米)的超宽带光响应能力。此外,该器件在长波红外波段表现出优异的无制冷探测能力,光响应度达到1.8 A/W。研究还展示了基于该光电探测器的自由空间光通信系统,证明了其在高速光通信领域的应用潜力。 (下图为G-WSe2-PtSe2光电器件结构及性能)
  • 《二维MnPSe3/CrSiTe3 van der Waals异质结构的高效能带结构调制。》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2018-03-30
    • 作为一种研究热潮,范德瓦尔斯(vdW)异质结构在纳米电子领域产生了众多的综合优点和新颖的应用。在此,我们系统地研究了具有不同堆积模式的MnPSe3/CrSiTe3 vdW异质结构的电子结构。然后,通过双轴应变或电场对MnPSe3/CrSiTe3 vdW异质结构的带结构调制进行了研究。在拉伸应变下,异质结构的相对带边缘位置由i型(嵌套式)转变为type-II型(错构型)。传导带最小的迁移也带来了从间接到直接带隙的过渡。在压缩应变下,电子性能由半导体变为金属。在不同的原子轨道叠加的情况下,能量带的变化可归因于应变依赖带结构的物理机制。同时,我们的计算表明,MnPSe3/CrSiTe3异质结构的带隙值对电场不敏感。即使如此,通过应用合适的负电场强度,也可以实现从typei到type-II的带对齐转换。通过外部因素的有效频带结构调制,使MnPSe3/CrSiTe3异质结构在新型应用中具有巨大的潜力,如应变传感器、光催化、自旋电子器件和光电子器件。 ——文章发布于2018年3月28日