《【文献】Advanced Science| Unipolar Barrier Photodetectors Based on Van Der Waals Heterostructure with Ultra-High Light On/Off Ratio and Fast Speed》

  • 来源专题:光电信息技术
  • 编译者: 王靖娴
  • 发布时间:2025-01-20
  • 【内容概述】该研究介绍了一种基于范德华异质结构(vdW heterostructure)的单极势垒光电探测器,其核心结构为多层石墨烯(G)、二硒化钨(WSe?)和二硒化铂(PtSe?)组成的G-WSe?-PtSe?异质结构。该器件实现了极高的光开关比(约10?)、超快响应速度(上升时间699纳秒,衰减时间452纳秒)以及高达4.87%的光电转换效率,并且在室温下展现出从紫外(365纳米)到长波红外(10.6微米)的超宽带光响应能力。此外,该器件在长波红外波段表现出优异的无制冷探测能力,光响应度达到1.8 A/W。研究还展示了基于该光电探测器的自由空间光通信系统,证明了其在高速光通信领域的应用潜力。

    (下图为G-WSe2-PtSe2光电器件结构及性能)

  • 原文来源:http://mp.weixin.qq.com/s?__biz=MzUzNTA0NDI1Ng==&mid=2247501618&idx=1&sn=e3edf6580a2be5296f9b34863c494127&scene=0
相关报告
  • 《Phonon transport in vacancy induced defective stanene/hBN van der Waals heterostructure》

    • 来源专题:现代化工
    • 编译者:武春亮
    • 发布时间:2024-07-28
    • Skip to content Accessibility Links Skip to content Skip to search IOPscience Skip to Journals list Accessibility help IOP Science home Accessibility Help Search Journals Journals list Browse more than 100 science journal titles Subject collections Read the very best research published in IOP journals Publishing partners Partner organisations and publications Open access IOP Publishing open access policy guide IOP Conference Series Read open access proceedings from science conferences worldwide Books Publishing Support Login IOPscience login / Sign Up Close Click here to close this panel. Search all IOPscience content Article Lookup Select journal (required) Select journal (required)2D Mater. (2014 - present)Acta Phys. Sin. (Overseas Edn) (1992 - 1999)Adv. Nat. Sci: Nanosci. Nanotechnol. (2010 - present)Appl. Phys. Express (2008 - present)Biofabrication (2009 - present)Bioinspir. Biomim. (2006 - present)Biomed. Mater. (2006 - present)Biomed. Phys. Eng. Express (2015 - present)Br. J. Appl. Phys. (1950 - 1967)Chin. J. Astron. Astrophys. (2001 - 2008)Chin. J. Chem. Phys. (1987 - 2007)Chin. J. Chem. Phys. (2008 - 2012)Chinese Phys. (2000 - 2007)Chinese Phys. B (2008 - present)Chinese Phys. C (2008 - present)Chinese Phys. Lett. (1984 - present)Class. Quantum Grav. (1984 - present)Clin. Phys. Physiol. Meas. (1980 - 1992)Combustion Theory and Modelling (1997 - 2004)Commun. Theor. Phys. (1982 - present)Comput. Sci. Discov. (2008 - 2015)Converg. Sci. Phys. Oncol. (2015 - 2018)Distrib. Syst. Engng. (1993 - 1999)ECS Adv. (2022 - present)ECS Electrochem. Lett. (2012 - 2015)ECS J. Solid State Sci. Technol. (2012 - present)ECS Sens. Plus (2022 - present)ECS Solid State Lett. (2012 - 2015)ECS Trans. (2005 - present)EPL (1986 - present)Electrochem. Soc. Interface (1992 - present)Electrochem. Solid-State Lett. (1998 - 2012)Electron. Struct. (2019 - present)Eng. Res. Express (2019 - present)Environ. Res. Commun. (2018 - present)Environ. Res. Lett. (2006 - present)Environ. Res.: Climate (2022 - present)Environ. Res.: Ecology (2022 - present)Environ. Res.: Energy (2024 - present)Environ. Res.: Food Syst. (2024 - present)Environ. Res.: Health (2022 - present)Environ. Res.: Infrastruct. Sustain. (2021 - present)Eur. J. Phys. (1980 - present)Flex. Print. Electron. (2015 - present)Fluid Dyn. Res. (1986 - present)Funct. Compos. Struct. (2018 - present)IOP Conf. Ser.: Earth Environ. Sci. (2008 - present)IOP Conf. Ser.: Mater. Sci. Eng. (2009 - present)IOPSciNotes (2020 - 2022)Int. J. Extrem. Manuf. (2019 - present)Inverse Problems (1985 - present)Izv. Math. (1993 - present)J. Breath Res. (2007 - present)J. Cosmol. Astropart. Phys. (2003 - present)J. Electrochem. Soc. (1902 - present)J. Geophys. Eng. (2004 - 2018)J. High Energy Phys. (1997 - 2009)J. Inst. (2006 - present)J. Micromech. Microeng. (1991 - present)J. Neural Eng. (2004 - present)J. Nucl. Energy, Part C Plasma Phys. (1959 - 1966)J. Opt. (1977 - 1998)J. Opt. (2010 - present)J. Opt. A: Pure Appl. Opt. (1999 - 2009)J. Opt. B: Quantum Semiclass. Opt. (1999 - 2005)J. Phys. A: Gen. Phys. (1968 - 1972)J. Phys. A: Math. Gen. (1975 - 2006)J. Phys. A: Math. Nucl. Gen. (1973 - 1974)J. Phys. A: Math. Theor. (2007 - present)J. Phys. B: At. Mol. Opt. Phys. (1988 - present)J. Phys. B: Atom. Mol. Phys. (1968 - 1987)J. Phys. C: Solid State Phys. (1968 - 1988)J. Phys. Commun. (2017 - present)J. Phys. Complex. (2019 - present)J. Phys. D: Appl. Phys. (1968 - present)J. Phys. E: Sci. Instrum. (1968 - 1989)J. Phys. Energy (2018 - present)J. Phys. F: Met. Phys. (1971 - 1988)J. Phys. G: Nucl. Part. Phys. (1989 - present)J. Phys. G: Nucl. Phys. (1975 - 1988)J. Phys. Mater. (2018 - present)J. Phys. Photonics (2018 - present)J. Phys.: Condens. Matter (1989 - present)J. Phys.: Conf. Ser. (2004 - present)J. Radiol. Prot. (1988 - present)J. Sci. Instrum. (1923 - 1967)J. Semicond. (2009 - present)J. Soc. Radiol. Prot. (1981 - 1987)J. Stat. Mech. (2004 - present)JoT (2000 - 2004)Jpn. J. Appl. Phys. (1962 - present)Laser Phys. (2013 - present)Laser Phys. Lett. (2004 - present)Mach. Learn.: Earth (2025 - present)Mach. Learn.: Eng. (2025 - present)Mach. Learn.: Health (2025 - present)Mach. Learn.: Sci. Technol. (2019 - present)Mater. Futures (2022 - present)Mater. Quantum. Technol. (2020 - present)Mater. Res. Express (2014 - present)Math. USSR Izv. (1967 - 1992)Math. USSR Sb. (1967 - 1993)Meas. Sci. Technol. (1990 - present)Meet. Abstr. (2002 - present)Methods Appl. Fluoresc. (2013 - present)Metrologia (1965 - present)Modelling Simul. Mater. Sci. Eng. (1992 - present)Multifunct. Mater. (2018 - 2022)Nano Ex. (2020 - present)Nano Futures (2017 - present)Nanotechnology (1990 - present)Network (1990 - 2004)Neuromorph. Comput. Eng. (2021 - present)New J. Phys. (1998 - present)Nonlinearity (1988 - present)Nouvelle Revue d'Optique (1973 - 1976)Nouvelle Revue d'Optique Appliquée (1970 - 1972)Nucl. Fusion (1960 - present)PASP (1889 - present)Phys. Biol. (2004 - present)Phys. Bull. (1950 - 1988)Phys. Educ. (1966 - present)Phys. Med. Biol. (1956 - present)Phys. Scr. (1970 - present)Phys. World (1988 - present)Phys.-Usp. (1993 - present)Physics in Technology (1973 - 1988)Physiol. Meas. (1993 - present)Plasma Phys. Control. Fusion (1984 - present)Plasma Physics (1967 - 1983)Plasma Res. Express (2018 - 2022)Plasma Sci. Technol. (1999 - present)Plasma Sources Sci. Technol. (1992 - present)Proc. Phys. Soc. (1926 - 1948)Proc. Phys. Soc. (1958 - 1967)Proc. Phys. Soc. A (1949 - 1957)Proc. Phys. Soc. B (1949 - 1957)Proc. Phys. Soc. London (1874 - 1925)Proc. Vol. (1967 - 2005)Prog. Biomed. Eng. (2018 - present)Prog. Energy (2018 - present)Public Understand. Sci. (1992 - 2002)Pure Appl. Opt. (1992 - 1998)Quantitative Finance (2001 - 2004)Quantum Electron. (1993 - present)Quantum Opt. (1989 - 1994)Quantum Sci. Technol. (2015 - present)Quantum Semiclass. Opt. (1995 - 1998)Rep. Prog. Phys. (1934 - present)Res. Astron. Astrophys. (2009 - present)Research Notes of the AAS (2017 - present)RevPhysTech (1970 - 1972)Russ. Chem. Rev. (1960 - present)Russ. Math. Surv. (1960 - present)Sb. Math. (1993 - present)Sci. Technol. Adv. Mater. (2000 - 2015)Semicond. Sci. Technol. (1986 - present)Smart Mater. Struct. (1992 - present)Sov. J. Quantum Electron. (1971 - 1992)Sov. Phys. Usp. (1958 - 1992)Supercond. Sci. Technol. (1988 - present)Surf. Topogr.: Metrol. Prop. (2013 - present)Sustain. Sci. Technol. (2024 - present)The Astronomical Journal (1849 - present)The Astrophysical Journal (1996 - present)The Astrophysical Journal Letters (2010 - present)The Astrophysical Journal Supplement Series (1996 - present)The Planetary Science Journal (2020 - present)Trans. Amer: Electrochem. Soc. (1930 - 1930)Trans. Electrochem. Soc. (1931 - 1948)Trans. Opt. Soc. (1899 - 1932)Transl. Mater. Res. (2014 - 2018)Waves Random Media (1991 - 2004) Volume number: Issue number (if known): Article or page number: Nanotechnology Purpose-led Publishing is a coalition of three not-for-profit publishers in the field of physical sciences: AIP Publishing, the American Physical Society and IOP Publishing. Together, as publishers that will always put purpose above profit, we have defined a set of industry standards that underpin high-quality, ethical scholarly communications. We are proudly declaring that science is our only shareholder. ACCEPTED MANUSCRIPT Phonon transport in vacancy induced defective stanene/hBN van der Waals heterostructure Mehady Hassan1, Priom Das2, Plabon Paul3, AKM Monjur Morshed4 and Titan C Paul5 Accepted Manuscript online 25 July 2024 ? © 2024 IOP Publishing Ltd What is an Accepted Manuscript? DOI 10.1088/1361-6528/ad6775 Download Accepted Manuscript PDF Figures Skip to each figure in the article Tables Skip to each table in the article References Citations Article data Skip to each data item in the article What is article data? Open science Article metrics Submit Submit to this Journal Permissions Get permission to re-use this article Share this article Article and author information Author e-mailsmonjur_morshed@me.buet.ac.bd Author affiliations1 Bangladesh University of Engineering and Technology Faculty of Mechanical Engineering, ME Department, BUET, Dhaka, Dhaka District, 1000, BANGLADESH 2 Mechanical Engineering, Bangladesh University of Engineering and Technology Faculty of Mechanical Engineering, EME Building, BUET Dhaka, Dhaka, Dhaka District, 1000, BANGLADESH 3 Mechanical Engineering, Bangladesh University of Engineering and Technology Faculty of Mechanical Engineering, EME Building, BUET, Dhaka, Dhaka, Dhaka Division, 1000, BANGLADESH 4 Mechanical Engineering, Bangladesh University of Engineering and Technology Faculty of Mechanical Engineering, 201 EME Building, BUET, Dhaka, Dhaka, Dhaka Division, 1000, BANGLADESH 5 Mathematical Sciences, University of South Carolina Aiken, PEN 219A, Aiken, SC, Aiken, South Carolina, 29801-6389, UNITED STATES ORCID iDsMehady Hassan https://orcid.org/0009-0009-2273-798XAKM Monjur Morshed https://orcid.org/0000-0001-7264-6204 Dates Received 19 March 2024 Revised 16 July 2024 Accepted 25 July 2024 Accepted Manuscript online 25 July 2024 Peer review information Method: Double-anonymous Revisions: 2 Screened for originality? Yes Journal RSS Sign up for new issue notifications 10.1088/1361-6528/ad6775 Abstract In this study, Non-Equilibrium Molecular Dynamics (NEMD) simulation is employed to investigate the phonon thermal conductivity (PTC) of Sn/hBN van der Waals heterostructures with different vacancy-induced defects. We deliberately introduce three types of vacancies in Sn/hBN bilayer point vacancies, bivacancies, and edge vacancies at various concentrations ranging from 0.25% to 2%, to examine their effects on PTC across temperatures from 100K to 600K. The key findings of our work are (i) PTC declines monotonically with increasing vacancy concentration for all types of vacancies, with a maximum reduction of ~62% observed at room temperature compared to its pristine form. (ii) The position of defects has an impact on PTC, with a larger decrease observed when defects are present in the hBN layer and a smaller decrease when defects are in the Sn layer. (iii) The type of vacancy also influences PTC, with point vacancies causing the most substantial reduction, followed by bivacancies, and edge vacancies having the least effect. A 2% defect concentration results in a ~62% decrease in PTC for point vacancies, ~51% for bivacancies, and ~32% for edge vacancies. (iv) Finally, our results indicate that for a given defect concentration, PTC decreases as temperature increases. The impact of temperature on thermal conductivity is less pronounced compared to the effect of vacancies for the defective Sn/hBN bilayer. The presence of vacancies and elevated temperatures enhance phonon-defect and phonon-phonon scattering, leading to changes in the phonon density of states (PDOS) profile and the distribution of phonons across different frequencies of Sn/hBN bilayer, thus affecting its thermal conductivity. This work offers new insights into the thermal behavior of vacancy-filled Sn/hBN heterostructures, suggesting potential pathways for modulating thermal conductivity in bilayer van der Waals heterostructures for applications in thermoelectric, optoelectronics, and nanoelectronics in future. Export citation and abstract BibTeX RIS During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere. As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period. After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0 Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record. Back to top 10.1088/1361-6528/ad6775 You may also like Journal articles VO2-enhanced double positive temperature coefficient effects of high density polyethylene/graphite composites Evaluation of Current, Future, and Beyond Li-Ion Batteries for the Electrification of Light Commercial Vehicles: Challenges and Opportunities Double-layered thin collector in n-type metal-base organic transistors Comparative assessment of thermal oils and water as working fluids in parabolic trough collectors for enhanced solar power generation A Kinetic Study of the Platinum/Carbon Anode Catalyst for Vanadium Redox Flow Battery Effect of the Addition of Conductive Material to Positive Temperature Coefficient Cathodes of Lithium-Ion Batteries IOPscience Journals Books IOP Conference Series About IOPscience Contact Us Developing countries access IOP Publishing open access policy Accessibility IOP Publishing Copyright 2024 IOP Publishing Terms and Conditions Disclaimer Privacy and Cookie Policy Publishing Support Authors Reviewers Conference Organisers This site uses cookies. By continuing to use this site you agree to our use of cookies. IOP Publishing Twitter page IOP Publishing Facebook page IOP Publishing LinkedIn page IOP Publishing Youtube page IOP Publishing WeChat QR code IOP Publishing Weibo page
  • 《【文献】Nature Communications | Unlocking ultra-high holographic information capacity through nonorthogonal polarization multiplexing》

    • 来源专题:光电信息技术
    • 编译者:王靖娴
    • 发布时间:2024-09-03
    • 【内容概述】这篇文献介绍了一种创新的非正交偏振复用技术,该技术通过在超材料单元内利用空间变化的本征偏振态,成功构建了全局非正交的复用通道,这些通道之间交叉干扰极小。研究团队不仅实现了在三个非正交通道中自由矢量全息图的生成,而且显著扩展了琼斯矩阵的维度,达到了突破性的10×10规模。通过可控的本征偏振工程机制与矢量衍射神经网络的结合,实验上成功创建了55个复杂的全息图案。研究发现,建立局域本征偏振操控与衍射光学神经网络赋能的全局非正交偏振通道,使得不同的非正交偏振态能够选择性地耦合或抑制,以实现光子多维度、多功能集成复用。这一进展代表了偏振复用领域的重大突破,为高级全息术和量子加密等应用领域开辟了新的可能性。通过增加偏振复用通道的数量和优化信号的传输质量,这项技术有助于实现更高速率和更高效率的光通信。 【延伸阅读】该研究由中国科学院上海技术物理研究所红外科学与技术重点实验室李冠海、陈效双、陆卫团队,联合东华大学邢怀中团队一起研究进行,在亚波长尺度上实现衍射光学神经网络赋能的非正交偏振全息复用方面取得进展,为复杂场景目标生成、通信信道容量提升、非线性光学和偏振探测等的应用提供了新的可能与参考。 (原文见附件)