《青岛能源所实现次黄嘌呤的高效生物合成》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2020-03-06
  • 嘌呤化合物是一类重要的生命活性物质,是细胞内的能量载体、辅酶因子,也是遗传物质DNA和RNA的重要结构组分。另外,嘌呤及其衍生物在食品添加剂、医药等方面也具有广泛的应用。次黄嘌呤是一种常见的嘌呤化合物,具有高活性的6-羟基功能团。次黄嘌呤的衍生物,例如6-巯基嘌呤是重要的抗肿瘤药物和植物生长调节剂。由于嘌呤类化合物具有广泛的生物活性和应用价值,使得人们对于该类化合物的高效合成产生了浓厚兴趣。

      在绝大多数微生物中,嘌呤的合成途径主要有从头合成途径和补救途径。嘌呤的从头合成途径是以5-磷酸核糖焦磷酸(PRPP)和谷氨酰胺为前体,经过10步反应合成次黄嘌呤核苷酸(IMP),IMP再通过两条支路分别转化为腺苷单磷酸(AMP)和 鸟苷单磷酸(GMP)。同时,IMP也可以进一步降解为次黄嘌呤。尽管嘌呤化合物的从头合成途径早已探明,但该合成途径受到转录阻遏、转录衰减以及底物反馈抑制等不同层面的严密调控,天然状态下难以积累。青岛能源所生物基材料组群赵广研究组近期在大肠杆菌内成功实现了次黄嘌呤的高效合成,并利用转录组学和荧光定量PCR技术分析了嘌呤代谢途径的合成调控机制。首先通过解除调控蛋白PurR的转录阻遏调控、关键酶定点突变缓解底物反馈抑制、提高嘌呤合成前体的积累,破坏IMP的分支代谢途径等方法将次黄嘌呤的积累提高近10倍。在5L发酵罐水平次黄嘌呤积累达到791.54 mg/L。然而在次黄嘌呤发酵过程中发现,副产物乙酸和黄嘌呤的积累显著。为解决副产物的积累问题,该课题组研究人员发现全局调控因子ArcA在嘌呤代谢调控中具有较好的效果,乙酸副产物的积累从8.40 g/L降低至1.21 g/L,而次黄嘌呤的产量达到1243 mg/L。

      通过转录组学和荧光定量PCR技术分析发现,经过上述改造后,嘌呤合成操作子pur和乙醛酸循环途径的基因表达水平显著上调,而IMP转化为AMP和GMP分支途径的基因表达下调。乙醛酸循环是副产物乙酸的重要同化途径,而且该循环没有CO2的流失,乙醛酸循环的上调可能是降低副产物合成,提高碳源转化率的重要机制。同时利用荧光定量PCR技术分析发现,全局调控因子ArcA不仅可以调控中心碳代谢途径,例如TCA循环、糖酵解途径、磷酸戊糖途径、乙醛酸循环,还可以直接调控嘌呤操纵子的基因表达水平。该项研究不仅实现了大肠杆菌内次黄嘌呤的高效生物合成,还为嘌呤类衍生物及核苷的生物合成调控提供了理论依据。

      该项研究成果发表在ACS Synthetic Biology期刊,相关系列研究获得了国家自然科学基金、山东省相关人才计划、中国科学院重点项目等的资助。(文/图 刘敏 赵广)

      相关成果发表:https://pubs.acs.org/doi/pdf/10.1021/acssynbio.9b00396

      Min Liu, Yingxin Fu, Wenjie Gao, Mo Xian*and Guang Zhao*. Highly efficient biosynthesis of hypoxanthine in Escherichia coli and transcriptome-based analysis of the purine metabolism. ACS Synthetic Biology. DOI: 10.1021/acssynbio.9b00396

相关报告
  • 《青岛能源所开发出全新的嗜热全菌催化塑料生物降解策略》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-04-30
    • 塑料是人类伟大的发明,它在可塑性、耐用性和化学稳定性等方面都令传统材料望尘莫及,因此被广泛地应用于工业生产和生活领域。据统计,目前全世界每年的塑料产量已达4亿吨且与日俱增。然而,塑料制品的大量生产和利用也同时带来源源不断的环境污染问题,仅中国每年就产生7000多万吨塑料垃圾。不仅如此,聚对苯二甲酸乙二醇酯(PET)等塑料的物理化学结构稳定,自然环境下难以分解,会造成长期生态问题。因此,PET废弃物的有效降解已成为当今人类社会急需解决的问题之一。PET生物降解法具有环境友好、条件温和的优势,而高温条件下有利于提高塑料的生物降解效率,因此,嗜热PET降解体系一直是国内外科研人员关注的焦点。   青岛能源所崔球研究员领导的代谢物组学研究组前期已成功建立了热纤梭菌这一典型嗜热细菌的成熟的基因操作平台,可以通过对热纤梭菌的任意遗传改造实现高效全菌催化剂的定向打造。目前,研究人员已经将基于热纤梭菌的全菌催化技术成功应用于木质纤维素的生物转化领域,建立了新型的整合生物糖化技术。基于此,代谢物组学研究组与德国格赖夫斯瓦尔德大学(University Greifswald)Uwe T. Bornscheuer团队合作,在塑料生物降解领域开展研究,建立了迄今为止已知的最高效的全菌PET塑料降解策略,证实了嗜热全菌催化策略的优越性和应用前景。研究成果以“Thermophilic whole-cell degradation of polyethylene terephthalate (PET) using engineered Clostridium thermocellum”为题于2020年4月28日发表于应用生物学领域国际期刊Microbial Biotechnology。博士研究生颜飞为该论文的第一作者,刘亚君副研究员、崔球研究员、德国Greifswald大学韦韧副教授为共同通讯作者。   研究人员以热纤梭菌作为底盘细胞,将来自枝叶堆肥元基因组的嗜热角质酶LCC在热纤梭菌中进行异源表达,从而成功建立了具有PET降解功能的嗜热全菌催化剂(图1)。该全菌催化剂可以在60℃条件下,14天内成功将60%的商业化PET塑料薄片转化为乙二醇和对苯二甲酸等可溶性单体(图2)。这一以热纤梭菌重组菌株为全菌催化剂的PET降解性能显著高于之前报道的基于嗜中温细菌和微藻的全菌催化体系。由于热纤梭菌可以通过合成纤维小体高效降解木质纤维素,因此,基于热纤梭菌的全菌催化策略还有望在混纺织品废弃物的生物回收中发挥出巨大的应用潜力。   该工作得到了中国科学院战略性先导专项、国家自然科学基金委、山东省自然科学基金委的资助。(文/图 颜飞 刘亚君)
  • 《青岛能源所针对蓝细菌合成生物学研究连续发表重要综述》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-09-16
    •   光合生物制造技术是指以光合生物为平台,将太阳能和二氧化碳直接转化为生物燃料和生物基化学品的技术,可以在单一平台、单一过程中同时取得固碳减排和绿色生产的效果。蓝细菌是极具潜力的光合微生物平台,相比较于高等植物和真核微藻,具有结构相对简单、生长快速、光合效率高、遗传操作便捷等优势,易于进行光合细胞工厂的开发。蓝细菌光合细胞工厂开发和优化的重要方向是对胞内光合碳流分配模式的调控和重塑,使更多的碳流向目标代谢产品的合成。糖原代谢是蓝细菌中重要的天然碳汇机制,储存了光合作用固定的碳和能量中超出细胞生长代谢所需的溢出部分。蓝细菌代谢工程领域传统上将糖原合成视为光合细胞工厂中目标产物合成的重要竞争途径,目前已经有大量通过阻断和弱化糖原合成途径来提高目标产物合成、优化蓝细菌光合细胞工厂效能的尝试案例,然而大多数案例未能取得效果,不同研究团队的类似操作甚至取得了矛盾的结果。   青岛能源所微生物代谢工程研究组前期围绕蓝细菌糖原代谢调控策略,以及糖原代谢扰动对蓝细菌生理和代谢功能影响的研究取得了系列成果,在此基础上,近期该研究组在生物技术领域重要综述期刊Biotechnology Advances上发表了题为“Progress and perspective on cyanobacterial glycogen metabolism engineering”的综述论文,对蓝细菌糖原代谢工程的进展和前景进行了系统的总结和展望。   基于对蓝细菌糖原代谢工程改造靶点、改造策略、以及生理和代谢功能影响的全面总结,微生物代谢工程研究组的研究人员提出,随着合成生物学和代谢工程策略和工具的不断开发和优化,对蓝细菌糖原代谢(合成、降解和储备)的调控技术已经非常成熟。然而,在此基础上要全面深入的认识蓝细菌糖原代谢的生理代谢功能,进而开发出能够有效优化细胞工厂效能的蓝细菌糖原代谢工程策略则仍有很长的路要走。如图1所示,糖原代谢对蓝细菌细胞生理和代谢功能的影响可以总结为两个方面:(1)作为最主要的天然碳汇机制,吸收光合固碳的“溢出”部分,保持光合碳流-能量流“输入”和“输出”的动态平衡;(2)作为重要的生理保护机制,促进细胞内稳态的维持。蓝细菌光合细胞工厂中,简单的阻断糖原合成、移除糖原储备,会抑制蓝细菌光合效能、降低蓝细菌生理和代谢鲁棒性,最终限制目标代谢产物合成能力的提升。未来,在糖原代谢扰动的基础上,对人工引入的代谢模块进行针对性设计,驱动细胞中能量-还原力、氧化-还原、光合-光呼吸等生理和代谢状态重平衡的实现,辅之以细胞生理保护机制的改造和强化,将有望实现对光合碳流真正有效的优化和控制,进而大幅提高蓝细菌光合生物制造的效能。   近期,微生物代谢工程研究组还应邀在生物技术领域另一重要期刊Current Opinion in Biotechnology上发表了题为“Engineering cyanobacteria chassis cells toward more efficient photosynthesis”的观点性综述论文,对面向未来光合生物制造需求的蓝细菌合成生物技术底盘细胞的设计原则、改造策略和发展方向进行了总结和展望。   在过去的二十年间,蓝细菌光合生物制造技术在概念上已经得到充分验证,已经实现了基于蓝细菌光合底盘的数十种天然或非天然代谢产物的光驱固碳合成。然而,目前蓝细菌光合细胞工厂无论是产量还是生产强度上较之经典的异养细胞工厂(大肠杆菌、酵母、乳酸菌、枯草芽孢杆菌等)都有着数量级的差距。从根本上分析,蓝细菌光合细胞工厂效能受制于其底盘细胞光合固碳系统的效率,高效的光合作用对于解锁蓝细菌光合细胞工厂的合成潜能至关重要。近年来,海量系统生物学数据的快速积累和高效合成生物技术工具的开发为蓝细菌底盘细胞光合固碳系统的功能认识和系统改造打开了大门,具有高温高光耐受能力和快速生长能力的新型蓝细菌藻株的发现和鉴定也为光合系统改造策略的设计提供了更多可借鉴的思路。微生物代谢工程研究组的研究人员比较、分析了上述两方面的最新研究进展,从光能捕集利用和二氧化碳固定转化两个层次,系统总结了“拓宽吸收光谱”、“提高强光耐受能力”、“提高光能传递和利用效率”、“加强碳源吸收能力”、“强化碳源固定效率”“减少碳代谢损失”等六种提高蓝细菌底盘细胞光合固碳能力的工程策略(图2)。进而提出,着眼未来大规模工业化体系下的蓝细菌工程藻株的培养和应用,除了从“硬件”角度升级光合作用系统的组分和途径外,还应该从“软件”角度考虑发展快速感知和智能响应系统,使蓝细菌底盘细胞和工程藻株可以针对多变、严苛的环境条件进行柔性适应,差异性的激活与之适配的光合固碳模式,实现光合固碳和定向合成的动态平衡,最大化的提升光合细胞工厂合成产出。