《青岛能源所开发出全新的嗜热全菌催化塑料生物降解策略》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2020-04-30
  • 塑料是人类伟大的发明,它在可塑性、耐用性和化学稳定性等方面都令传统材料望尘莫及,因此被广泛地应用于工业生产和生活领域。据统计,目前全世界每年的塑料产量已达4亿吨且与日俱增。然而,塑料制品的大量生产和利用也同时带来源源不断的环境污染问题,仅中国每年就产生7000多万吨塑料垃圾。不仅如此,聚对苯二甲酸乙二醇酯(PET)等塑料的物理化学结构稳定,自然环境下难以分解,会造成长期生态问题。因此,PET废弃物的有效降解已成为当今人类社会急需解决的问题之一。PET生物降解法具有环境友好、条件温和的优势,而高温条件下有利于提高塑料的生物降解效率,因此,嗜热PET降解体系一直是国内外科研人员关注的焦点。
      青岛能源所崔球研究员领导的代谢物组学研究组前期已成功建立了热纤梭菌这一典型嗜热细菌的成熟的基因操作平台,可以通过对热纤梭菌的任意遗传改造实现高效全菌催化剂的定向打造。目前,研究人员已经将基于热纤梭菌的全菌催化技术成功应用于木质纤维素的生物转化领域,建立了新型的整合生物糖化技术。基于此,代谢物组学研究组与德国格赖夫斯瓦尔德大学(University Greifswald)Uwe T. Bornscheuer团队合作,在塑料生物降解领域开展研究,建立了迄今为止已知的最高效的全菌PET塑料降解策略,证实了嗜热全菌催化策略的优越性和应用前景。研究成果以“Thermophilic whole-cell degradation of polyethylene terephthalate (PET) using engineered Clostridium thermocellum”为题于2020年4月28日发表于应用生物学领域国际期刊Microbial Biotechnology。博士研究生颜飞为该论文的第一作者,刘亚君副研究员、崔球研究员、德国Greifswald大学韦韧副教授为共同通讯作者。
      研究人员以热纤梭菌作为底盘细胞,将来自枝叶堆肥元基因组的嗜热角质酶LCC在热纤梭菌中进行异源表达,从而成功建立了具有PET降解功能的嗜热全菌催化剂(图1)。该全菌催化剂可以在60℃条件下,14天内成功将60%的商业化PET塑料薄片转化为乙二醇和对苯二甲酸等可溶性单体(图2)。这一以热纤梭菌重组菌株为全菌催化剂的PET降解性能显著高于之前报道的基于嗜中温细菌和微藻的全菌催化体系。由于热纤梭菌可以通过合成纤维小体高效降解木质纤维素,因此,基于热纤梭菌的全菌催化策略还有望在混纺织品废弃物的生物回收中发挥出巨大的应用潜力。
      该工作得到了中国科学院战略性先导专项、国家自然科学基金委、山东省自然科学基金委的资助。(文/图 颜飞 刘亚君)

相关报告
  • 《青岛能源所开发出合成聚酯生物医用材料的协同催化策略》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-04-15
    • 脂肪族聚酯类高分子材料是一类重要的合成医用高分子聚合物 , 具有良好的生物相容性和生物可降解性,广泛应用于手术缝合线、植入内固定器械、药物缓释等方面。其中应用最广泛的聚酯材料包括聚丙交酯 (PLA ) 、聚乙交酯 ( PGA ) 、聚戊内酯 (δ-PVL ) 及聚己内酯 ( ε-PCL ) 等等。对于这类广泛应用材料的高效可控聚合研究是目前迫切需要解决的科学难题。有机小分子催化的环状内酯开环聚合反应是合成该类聚酯的重要方法之一,与其它方法相比如金属催化方法,有机催化聚合方法具有制备聚合物分子量可控、多分散性窄、端基明确以及无金属残留等诸多优点。    青岛能源所生物基材料组群王庆刚带领的绿色橡胶研究组报道了一例卡宾烯和硫脲协同催化内酯的开环聚合反应“ N-Heterocyclic olefins and thioureas as an efficient cooperative catalyst system for ringopening polymerization of δ-valerolactone ”。相关成果已发表于高分子科学领域一区杂志 Polymer Chemistry (Polym. Chem., 2019, 10, 1832–1838, DOI: 10.1039/c9py00018f) 上。在硫脲与碱的有机共催化体系中,硫脲通常通过双氢键活化单体中的羰基,而碱通过氢键活化引发剂或链末端。因此,碱的选择对于催化效率具有重要影响。对于碱的研究,文献报道主要集中在含氮碱( MTBD, BEMP, DBU 等)。但这类碱的碱性相对较弱,因此催化剂的催化活性较低。为了解决这一问题,王庆刚课题组首次利用碱性更强的碳负离子(卡宾烯)作为碱,与硫脲协同催化,实现了内酯的高效开环聚合反应。反应机理研究表明该反应是硫脲负离子的双活化作用机制:有机强碱可以直接拔去硫脲中氮原子上酸性较强的氢,形成硫脲负离子,硫脲负离子通过氢键同时活化单体及引发剂,引发开环聚合反应。同时,该协同催化策略也适用于 δ-VL, D,L-LA 及ε-CL 等内酯的开环聚合反应,得到相应的聚酯生物医用材料。该催化体系具有催化剂简单易得、催化效率高及 广泛适用性等独特优势。 上述成果由博士生周丽和博士后徐广强作为共同第一作者完成。该工作得到了科技部重点研发计划 (2017YFC1104800), 中国科学院“相关人才计划” (Y5100719AL), 山东省泰山青年学者计划, 青岛能源所 “135” 重点培育计划等经费的大力资助。
  • 《青岛能源所开发出高活性的生物质碳负载Fe/Pt单原子双功能催化剂》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2021-01-21
    • 单原子催化剂因其具有最大的原子利用效率、量子尺寸效应和活性中心的配位不饱和构型而在催化领域受到广泛关注。在过去的几年里,单原子催化剂在燃料电池、电解水和金属-空气电池等可再生能源技术领域取得了快速的发展。然而,单原子催化剂的活性位点数量有限,催化剂合成过程相对复杂,并且大多数用于合成单原子催化剂载体的化学品价格昂贵、毒性大,严重限制了单原子催化剂的实际生产应用。同时,由于金属与载体之间的弱相互作用,这些具有高表面能的单原子在制备过程中也容易发生迁移和聚集。因此,探索环境友好、廉价且高效的载体以及高金属载量催化剂的制备工艺对于合成双金属单原子催化剂至关重要。 图1 Fe1Pt1/NC双单原子催化剂的合成路径 图2 Fe1Pt1/NC和Fe1/NC的球差电镜和EXAF表征图   近日,青岛能源所梁汉璞研究员带领的能源材料与纳米催化研究组,在利用可循环再生的生物质制备单原子的基础上(Carbon, 2020, 157614-621. DOI: 10.1016/j.carbon.2019.10.054.),提出一种价格低廉、环保且可大规模生产的Fe/Pt双单原子催化剂的制备策略(图1)。该方法以富含铁的可再生生物质紫菜作为原材料,在不添加任何铁源的情况下,紫菜利用自身毛细管吸附作用吸收含氮溶液达到饱和状态,再经过高温热解即可得Fe-N-C前驱体。之后,在水溶液中通过Fe-N-C的微孔捕获和氮锚定作用可以实现对Pt4+的强锚定,从而得到Fe/Pt双单原子催化剂(Fe1Pt1/NC)。该催化剂具有较高的比表面积和丰富的孔结构,Fe和Pt的负载量分别高达0.166 wt% 和2.29 wt%。经研究证明,第二种金属原子Pt的引入增加了催化剂的活性位点数量,Fe1Pt1/NC中的Fe和Pt均为单原子态(图2),以FeN4和PtN4的结构形成活性中心,使得催化剂具有优于Fe-N-C前驱体和商业Pt/C催化剂的氧还原反应和析氢反应的催化活性。该研究工作为利用可再生生物质设计高活性的多功能单原子电催化剂提供了一种有效途径。相关成果近期发表在《ACS Sustainable Chemistry & Engineering》杂志上(ACS Sustain. Chem. Eng. 2021, 9, 1, 189–196. DOI: 10.1021/acssuschemeng.0c06558)。   上述研究获得中国科学院人才项目基金,大连清洁能源国家实验室和中国科学院科研创新基金,青岛创业创新领军人才基金,大连化物所-青岛能源所两所融合项目基金以及中国科学院绿色过程制造创新研究院项目基金的支持。