《青岛能源所开发出合成聚酯生物医用材料的协同催化策略》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2019-04-15
  • 脂肪族聚酯类高分子材料是一类重要的合成医用高分子聚合物 , 具有良好的生物相容性和生物可降解性,广泛应用于手术缝合线、植入内固定器械、药物缓释等方面。其中应用最广泛的聚酯材料包括聚丙交酯 (PLA ) 、聚乙交酯 ( PGA ) 、聚戊内酯 (δ-PVL ) 及聚己内酯 ( ε-PCL ) 等等。对于这类广泛应用材料的高效可控聚合研究是目前迫切需要解决的科学难题。有机小分子催化的环状内酯开环聚合反应是合成该类聚酯的重要方法之一,与其它方法相比如金属催化方法,有机催化聚合方法具有制备聚合物分子量可控、多分散性窄、端基明确以及无金属残留等诸多优点。   

    青岛能源所生物基材料组群王庆刚带领的绿色橡胶研究组报道了一例卡宾烯和硫脲协同催化内酯的开环聚合反应“ N-Heterocyclic olefins and thioureas as an efficient cooperative catalyst system for ringopening polymerization of δ-valerolactone ”。相关成果已发表于高分子科学领域一区杂志 Polymer Chemistry (Polym. Chem., 2019, 10, 1832–1838, DOI: 10.1039/c9py00018f) 上。在硫脲与碱的有机共催化体系中,硫脲通常通过双氢键活化单体中的羰基,而碱通过氢键活化引发剂或链末端。因此,碱的选择对于催化效率具有重要影响。对于碱的研究,文献报道主要集中在含氮碱( MTBD, BEMP, DBU 等)。但这类碱的碱性相对较弱,因此催化剂的催化活性较低。为了解决这一问题,王庆刚课题组首次利用碱性更强的碳负离子(卡宾烯)作为碱,与硫脲协同催化,实现了内酯的高效开环聚合反应。反应机理研究表明该反应是硫脲负离子的双活化作用机制:有机强碱可以直接拔去硫脲中氮原子上酸性较强的氢,形成硫脲负离子,硫脲负离子通过氢键同时活化单体及引发剂,引发开环聚合反应。同时,该协同催化策略也适用于 δ-VL, D,L-LA 及ε-CL 等内酯的开环聚合反应,得到相应的聚酯生物医用材料。该催化体系具有催化剂简单易得、催化效率高及 广泛适用性等独特优势。

    上述成果由博士生周丽和博士后徐广强作为共同第一作者完成。该工作得到了科技部重点研发计划 (2017YFC1104800), 中国科学院“相关人才计划” (Y5100719AL), 山东省泰山青年学者计划, 青岛能源所 “135” 重点培育计划等经费的大力资助。

相关报告
  • 《青岛能源所开发出全新的嗜热全菌催化塑料生物降解策略》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-04-30
    • 塑料是人类伟大的发明,它在可塑性、耐用性和化学稳定性等方面都令传统材料望尘莫及,因此被广泛地应用于工业生产和生活领域。据统计,目前全世界每年的塑料产量已达4亿吨且与日俱增。然而,塑料制品的大量生产和利用也同时带来源源不断的环境污染问题,仅中国每年就产生7000多万吨塑料垃圾。不仅如此,聚对苯二甲酸乙二醇酯(PET)等塑料的物理化学结构稳定,自然环境下难以分解,会造成长期生态问题。因此,PET废弃物的有效降解已成为当今人类社会急需解决的问题之一。PET生物降解法具有环境友好、条件温和的优势,而高温条件下有利于提高塑料的生物降解效率,因此,嗜热PET降解体系一直是国内外科研人员关注的焦点。   青岛能源所崔球研究员领导的代谢物组学研究组前期已成功建立了热纤梭菌这一典型嗜热细菌的成熟的基因操作平台,可以通过对热纤梭菌的任意遗传改造实现高效全菌催化剂的定向打造。目前,研究人员已经将基于热纤梭菌的全菌催化技术成功应用于木质纤维素的生物转化领域,建立了新型的整合生物糖化技术。基于此,代谢物组学研究组与德国格赖夫斯瓦尔德大学(University Greifswald)Uwe T. Bornscheuer团队合作,在塑料生物降解领域开展研究,建立了迄今为止已知的最高效的全菌PET塑料降解策略,证实了嗜热全菌催化策略的优越性和应用前景。研究成果以“Thermophilic whole-cell degradation of polyethylene terephthalate (PET) using engineered Clostridium thermocellum”为题于2020年4月28日发表于应用生物学领域国际期刊Microbial Biotechnology。博士研究生颜飞为该论文的第一作者,刘亚君副研究员、崔球研究员、德国Greifswald大学韦韧副教授为共同通讯作者。   研究人员以热纤梭菌作为底盘细胞,将来自枝叶堆肥元基因组的嗜热角质酶LCC在热纤梭菌中进行异源表达,从而成功建立了具有PET降解功能的嗜热全菌催化剂(图1)。该全菌催化剂可以在60℃条件下,14天内成功将60%的商业化PET塑料薄片转化为乙二醇和对苯二甲酸等可溶性单体(图2)。这一以热纤梭菌重组菌株为全菌催化剂的PET降解性能显著高于之前报道的基于嗜中温细菌和微藻的全菌催化体系。由于热纤梭菌可以通过合成纤维小体高效降解木质纤维素,因此,基于热纤梭菌的全菌催化策略还有望在混纺织品废弃物的生物回收中发挥出巨大的应用潜力。   该工作得到了中国科学院战略性先导专项、国家自然科学基金委、山东省自然科学基金委的资助。(文/图 颜飞 刘亚君)
  • 《青岛能源所开发出新型生物质基碳材料负载催化剂制备方法》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-07-27
    • 杂原子掺杂碳材料,由于其大比表面积、高孔隙、良好的电子传导性以及热、机械稳定性等特点,已被广泛应用于催化、能源、生命科学等领域。传统的制备方法往往都以不可再生碳源作为原料,制备过程一般要加入昂贵的模板、活化剂及杂原子源等。近年来,随着能源危机的日益凸显,以自然界中廉价易得、可再生的生物质为原料制备功能性生物质基碳材料受到科研工作者的日益关注。   自2017年以来,中国科学院青岛生物能源与过程研究所研究员杨勇带领的低碳催化转化研究组以竹笋为材料,通过简单水热碳化过程实现了N,O双杂原子掺杂的生物质碳材料的绿色制备。制备过程中以水为介质,无需添加活化剂和额外杂原子源,操作简便、绿色环保。所制得的碳材料比表面积高(>1000 m2g-1),孔容大(0.84 cm3g-1),N含量高(3.32 wt%),且具有多级孔(微-介-大孔)结构。同时,以该碳材料为载体,通过浸渍还原法制备出粒径分布均匀、高度分散负载金属Pd纳米结构催化剂Pd/N,O-Carbon,并应用于系列炔烃的官能团化转化反应。研究发现,碳结构中N原子的掺杂有效促进了金属Pd纳米颗粒在载体表面的分散和稳定,并在一定程度上调节金属Pd纳米颗粒的电子性能和与载体的相互作用。这种载体与金属纳米颗粒间的协同效应极大提高了该催化剂在炔烃高选择性转化及官能团化中的催化性能。相关研究结果分别申请专利一项并发表在ChemSusChem (2017, 10, 3427-3434); Catalysis Science & Technology (2018, 8, 1039-1050); Catalysis Today (2018, DOI: 10.1016/j.cattod.2018.04.036) 等国际期刊上。   从经济和可持续发展的角度出发,开发高活性高稳定性的廉价和储量丰富的非贵金属替代稀有贵金属催化剂,实现重要能源和化工过程的高效转化是目前催化科学研究的热点和挑战之一。在前期研究基础上,该研究组继续以竹笋和廉价、低毒的非贵金属钴盐为原料,通过优化和调控制备方法和策略,构建了一类新型杂原子(N,O,或P)掺杂的具有独特核壳结构的Co纳米颗粒催化剂。研究人员充分利用生物质竹笋本身富含的杂原子源(氨基酸、蛋白质等),在没有外加入模板和活化剂的条件下,开发了一条简单、绿色并可放大制备的生物质基碳材料负载Co纳米催化剂的制备方法。所制备的催化剂具有高比表面积、大孔容、分级孔等结构特点。   通过适当调变制备条件参数,研究人员分别制备杂原子掺杂碳层包埋钴纳米颗粒核壳结构催化剂(Core-Shell Co@NPC)和钴氧化物包裹金属Co纳米颗粒负载杂原子掺杂碳杂化材料催化剂(Core-Shell Co@CoOx/NC)(如图1所示)。两类纳米结构催化剂对芳硝基化合物直接加氢还原(以氢气为还原剂)或氢转移还原(以甲酸或甲酸铵为还原剂)合成苯胺类衍生物反应表现出优异的催化活性、化学选择性和宽广底物普适性。进一步研究发现,Co纳米颗粒催化剂也对硝基化合物一锅法还原胺化及甲酰化反应同样表现出优异的催化活性。所制得的芳香族胺类及衍生物在精细化工、药物化学及材料科学领域均具有广泛的应用(如图2所示)。此外,催化剂构效关系研究表明,生物质基碳材料结构中所“嵌入”的杂原子不仅可作为络合位点,同时又可作为活化底物位点,这种“协同”作用极大地改善了催化剂反应活性和稳定性。同时,该类催化剂具有一定的磁性特征,可利用外加磁场实现催化剂的简便分离回收和再利用。相关研究结果近期申请专利三项,并分别发表在Green Chemistry (2018, 20, 2821-2828),Green Chemistry (2018, DOI: 10.1039/C8GC01374H),Chemical Communications(2018, DOI: 10.1039/c8cc05285A)上。该研究工作不仅为硝基芳烃的还原转化提供一条绿色、温和的反应路线,也为生物质基碳材料负载非贵金属催化剂的设计与合成提供了新思路。   上述研究工作得到了青岛能源所启动资金的大力支持。   相关发表论文及链接:   1.Guijie. Ji, Yanan Duan, Saochun Zhang, Benhua Fei, Xiufang Chen, Yong Yang, Selective Semihydrogenation of Alkynes Catalyzed by Pd Nanoparticles Immobilized on Heteroatom- Doped Hierarchical Porous Carbon Derived from Bamboo Shoots, ChemSusChem 2017, 10, 3427-3434. (https://onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201701127)   2.Yanan Duan, Guijie Ji, Shaochun Zhang, Xiufang Chen, Yong Yang, Additive-modulated switchable reaction pathway in the addition of alkynes with organosilanes catalyzed by supported Pd nanoparticles: hydrosilylation versus semihydrogenation, Catal. Sci. Technol. 2018, 8, 1039-1050. (http://pubs.rsc.org/en/content/articlelanding/2018/cy/c7cy02280h/ unauth#!divAbstract)   3.Guijie Ji, Yanan Duan, Shaochun Zhang, Yong Yang, Synthesis of benzofurans from terminal alkynes and iodophenols catalyzed by recyclable palladium nanoparticles supported on N,O-dual doped hierarchical porous carbon under copper- and ligand-free conditions, Catalysis Today, 2018, 10.1016/j.cattod.2018.04.036. (https://www.sciencedirect.com/science/ article/pii/S0920586118304814)   4.Yanan Duan, Tao Song, Xiaosu Dong, Yong Yang, Enhanced catalytic performance of cobalt nanoparticles coated with a N,P-codoped carbon shell derived from biomass for transfer hydrogenation of functionalized nitroarenes, Green Chem. 2018, 20, 2821-2828. (http://pubs.rsc.org/en/content/articlelanding/2018/gc/c8gc00619a/unauth#!divAbstract)   5.Tao Song, Peng Ren, Yanan Duan, Zhaozhan Wang, Xiufang Chen, Yong Yang, Cobalt nanocomposites on N-doped hierarchical porous carbon for highly selective formation of anilines and imines from nitroarenes, Green Chemistry, 2018, 10.1039/C8GC01374H. (https://pubs.rsc.org/en/content/articlelanding/2018/gc/c8gc01374h/unauth#!divAbstract)   6.Xiaosu Dong, Zhaozhan Wang, Yanan Duan, Yong Yang, One-pot selective N-formylation of nitroarenes to formamides catalyzed by core–shell structured cobalt nanoparticles, Chem. Commun., 2018, 10.1039/C8CC05285A. (http://pubs.rsc.org/en/content/ articlelanding/2018/cc/c8cc05285a#!divAbstract)   相关申请专利:   1.一种借氢还原偶联合成亚胺和胺类化合物的方法(申请号:201810430256.4)   2.一种芳胺类化合物的制备方法(申请号:201810145587.0)   3.一种氮掺杂生物质基碳材料负载催化剂及其制备和应用(申请号:201810365971.4)   4.一种通过无铜无配体钯催化剂合成苯并呋喃衍生物的方法(申请号:201810353093.4)