《Science | 减数分裂DNA断裂驱动人类生殖系的多方面突变》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2023-12-03
  • 2023年12月1日,牛津大学的研究人员在Science 在线发表题为Meiotic DNA breaks drive multifaceted mutagenesis in the human germ line的文章。

    减数分裂重组开始于数百个程序化的DNA断裂,然而,人们对它们精确修复的程度仍然知之甚少。

    该研究报告说,减数分裂断裂修复的致突变性比以前所理解的要高8倍,导致1 / 4的精子和1 / 12的卵子发生新生突变。它对指数和结构变体的影响甚至更高,每次中断的利率增加100到1300倍。该研究发现了与断裂位点相关的新的突变特征和足迹,这涉及意想不到的生化过程和易出错的DNA修复机制,包括减数分裂断裂修复中的翻译合成和末端连接。该研究提供的证据表明,这些机制驱动突变在人类生殖系和导致数百个基因全基因组的破坏。

  • 原文来源:https://www.science.org/doi/10.1126/science.adh2531
相关报告
  • 《中国科学院植物所等揭示玉米花药减数分裂期特异表达24-nt phasiRNA对甲基化的功能》

    • 来源专题:转基因生物新品种培育
    • 编译者:王晶静
    • 发布时间:2020-11-27
    • PhasiRNA(phased, secondary, small interfering RNA)在植物的生长、发育、生殖以及抗病过程中发挥重要作用。在玉米花药发育过程中,有两类phasiRNA大量产生:一类是在细胞增殖分化期大量产生的21-nt phasiRNA,另一类是在减数分裂期大量富集的24-nt phasiRNA。已有研究发现,玉米多个雄性不育突变体往往伴随着21-或24-nt phasiRNA的缺失,24-nt phasiRNA对于玉米花药器官中绒毡层细胞的正常发育十分重要,其前体(24-PHAS)在花药性母细胞中CHH背景下的DNA甲基化水平更高。 在已有的研究的基础上,中国科学院植物研究所张梅研究组和美国斯坦福大学Walbot研究组等,利用两个玉米雄性不育突变体dcl5-1(仅产生少量24-nt phasiRNA)和ms23(无24-nt phasiRNA产生),进一步探讨24-PHAS上CHH甲基化水平的提高是否和24-nt phasiRNA的大量产生有关。研究利用基于序列捕获的亚硫酸盐测序(sequence capture bisulfite-sequencing)技术,分析玉米雄性不育突变体dcl5-1和ms23中24-PHAS上CHH甲基化水平的变化情况。研究发现,相对于正常可育的植株,突变体中CHH甲基化水平明显降低。在玉米花药发育减数分裂期前的细胞分化期,24-PHAS上CHH甲基化水平也维持一个较低的状态。由于在dcl5-1突变体中,24-PHAS的转录水平没有发生变化,因此推断玉米减数分裂期24-PHAS上CHH甲基化水平的提高依赖于24-nt phasiRNA的产生,而不是24-PHAS的转录。 研究进一步发现,尽管每个24-PHAS在不同位置会产生很多24-nt phasiRNA,但是对于单个PHAS,仅有一类或少数几类24-nt phasiRNA会大量产生,且在其基因组产生位点及邻近位置上往往有较高的CHH甲基化水平,因此推测24-nt phasiRNA能够顺式介导24-PHAS上CHH甲基化的发生。 相关研究成果近日在线发表在New Phytologist上。植物所研究员张梅为论文的第一作者和通讯作者,植物所助理工程师马旭旭与斯坦福大学教授Virginia Walbot为论文的共同第一作者。研究工作得到中国科学院人才计划启动基金、美国国家科学基金会植物基因组研究项目和博士后国际交流计划派出项目等的支持。 论文链接:https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.17060
  • 《Science | 活体染色体识别与追踪揭示了卵母细胞减数分裂错误的空间路径》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-07-23
    • 2024年7月19日,日本理化学研究所的研究人员在Science发表题为Live chromosome identifying and tracking reveals size-based spatial pathway of meiotic errors in oocytes的文章。 卵母细胞中相对较小染色体的减数分裂错误会导致卵子非整倍体,从而引起流产和先天性疾病。与体细胞优先错误分离较大染色体不同,高龄卵母细胞优先错误分离较小染色体的过程尚不清楚。 该研究提供了一个全面的三维染色体识别和跟踪数据集,该数据集贯穿于活体小鼠卵母细胞减数分裂 I 的整个过程。这项分析揭示了一种将较小染色体主动移至减数分裂中期板内部区域的减数分裂后期途径。在内部区域,染色体受到更强的双极微管力的牵引,这有利于染色体的过早分离,而这正是老年卵母细胞分离错误的主要原因。这项研究揭示了在高龄卵子中促进小染色体非整倍性的空间途径,并揭示了M期在形成基于染色体大小的空间排列中的作用。