《精密测量科学与技术创新研究院(筹)科研产出分析报告》

  • 来源专题:精密测量科技动态监测平台
  • 编译者: marcus2017
  • 发布时间:2018-11-20
  • 为了解中国科学院精密测量科学与技术创新研究院(筹)目前的研究状况、各学科发展趋势、相关学科专业人才配置等,本文将创新研究院依托单位中国科学院武汉物理与数学研究所和中国科学院测量与地球物理研究所于2008-2018年间收录在科睿唯安的Web of Science核心合集子数据库SCI -E和CPCI-S中的研究论文及两所在国家知识产权局申请的专利,采用文献计量学方法进行分析和比较;并将武汉物数所和测地的国家级科学技术奖进行了梳理。

相关报告
  • 《中国科学院精密测量科学与技术创新研究院等在量子引擎实验探索方面获进展》

    • 编译者:李晓萌
    • 发布时间:2024-07-06
    • 中国科学院精密测量科学与技术创新研究院束缚体系量子信息处理研究组与广州工业技术研究院等合作,基于超冷40Ca+离子实验平台,实验探索了纠缠作为一种量子资源对量子引擎的影响。实验结果显示,量子引擎在其工作物质处于纠缠状态时能够输出更多的有用功,表明纠缠可作为“燃料”使用。 纠缠在信息处理过程中是特有的量子资源,可以加快计算速度、保证通信中的信息安全以及提高测量的精度。当前,关于纠缠在能量转换和使用方面是否可以发挥作用尚不完全清楚;具有纠缠特性的量子引擎是否优于经典引擎以及在何种条件下发生尚无定论。同时,鲜有关于以量子纠缠系统为工作物质的量子引擎的实验研究,亦未有定量的实验验证。 该研究组以稳定束缚在离子阱中的超冷40Ca+离子为工作物质,设计了具有纠缠特性的量子引擎。该量子引擎带有一个量子负载。它由离子所共有的一个量子振动模式来充当。科研人员利用热力学循环使该量子引擎将激光的光子能量通过工作物质(离子)转化为量子负载的声子能量,并定义了转换效率。进而,为了估算这些转化的能量有多少是可以提取的能量即有用功,研究人员定义了机械效率。 为了验证纠缠在量子引擎中的作用,该研究通过调整工作物质的纠缠度来定量评估量子引擎的性能。实验中,研究通过精准操控激光来控制纠缠逻辑门操作的时间,以获得不同纠缠度的工作物质。同时,研究通过测量工作物质中被吸收的光子数和负载中增加的声子数,得到了不同纠缠度下的转换效率和机械效率。实验表明,机械效率的最大值出现在工作物质为最大纠缠处,但转换效率几乎不受纠缠度的影响。实验数据分析表明,量子引擎在其工作物质处于纠缠态时能够输出更多的有用功;而量子引擎的转换效率与纠缠无关,也与有用功的输出无关。 该成果为纠缠能够在量子引擎中起到“燃料”的作用提供了实验证据,并表明了量子引擎的研发应更多地关注机械效率而不是转换效率。上述成果为研发量子马达和量子电池等微观能源器件提供了新视角。 近日,相关研究成果以Energy-Conversion Device Using a Quantum Engine with the Work Medium of Two-Atom Entanglement为题,发表在《物理评论快报》(Physical Review Letters)上。研究工作得到国家自然科学基金和中国博士后科学基金等的支持。
  • 《中国科学院精密测量科学与技术创新研究院在铝离子光钟精密测量领域取得进展》

    • 编译者:李晓萌
    • 发布时间:2024-08-20
    • 近日,中国科学院精密测量科学与技术创新研究院离子光频标研究组与原子分子外场理论研究组合作,在铝离子光钟精密测量研究中取得进展。研究团队首次提出了一种具有普适性的“极化率天平”测量方案,实现离子极化率之差的高精度测量。基于该方案,团队利用Ca+离子作为“参考砝码”,通过测量囚禁在同一个离子阱中的Ca+和Al+离子的光频移之比,高精度地确定了Al+离子钟跃迁的极化率之差这一学术难题。相关研究成果近期发表在《物理评论快报》(Physical Review Letters)上(10.1103/PhysRevLett.133.033001)。 光频标钟跃迁上态和下态的静态极化率之差是评估光频标体系黑体辐射频移所需的重要参数,其不确定度是高精度光频标的系统不确定度的重要来源之一。极少数离子光钟体系(如Ca+和Sr+)的静态极化率之差为负值,可以采用“魔幻射频囚禁场”方案高精度测量其跃迁的静态极化率之差,精密测量院高克林研究团队于2019年测得Ca+钟跃迁静态极化率之差的不确定度仅为0.029%。而对于大多数离子光钟体系跃迁的静态极化率之差,通常只能通过理论计算或传统的光频移测量方案得到。对于Al+钟跃迁的静态极化率之差,此前最好的理论计算值的不确定度为9.8%,2019年美国NIST实验测量值的不确定度为13.4%,其测量精度主要受限于背景激光的功率波动和光功率密度的测量精度。 研究团队创造性地提出一种基于“原位”测量的“极化率天平”测量方案,通过测量共同囚禁在同一个离子阱中的两种离子光频移的比值来测得其极化率之差的比值,利用离子阱轴向通光的方法达到完全消除背景光功率波动和光功率密度误差带来的影响,巧妙地将Ca+钟跃迁极化率之差的高精度特性传递给Al+钟跃迁的极化率之差测量,最终将铝离子静态极化率之差测量值测量精度提高到3.4%,比美国NIST在2019年的测量精度提高4倍。理论分析预言,若采用波长更长的背景光,有望继续将测量精度进一步提高。 这一测量方案可以推广至任意离子体系,对离子光钟黑体辐射频移的高精度评估具有重要意义。 Al+离子光频标研究长期得到科技部、国家自然科学基金委和中国科学院等的大力支持。