《MedRixv,3月3日,Relations of parameters for describing the epidemic of COVID―19 by the Kermack―McKendrick model》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-03-04
  • Relations of parameters for describing the epidemic of COVID―19 by the Kermack―McKendrick model

    Toshihisa Tomie

    doi: https://doi.org/10.1101/2020.02.26.20027797

    Abstract

    In order to quantitatively characterize the epidemic of COVID―19, useful relations among parameters describing an epidemic in general are derived based on the Kermack-McKendrick model. The first relation is 1/τgrow=1/τtrans−1/τinf, where τgrow is the time constant of the exponential growth of an epidemic, τtrans is the time for a pathogen to be transmitted from one patient to uninfected person, and the infectious time τinf is the time during which the pathogen keeps its power of transmission.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.medrxiv.org/content/10.1101/2020.02.26.20027797v1
相关报告
  • 《3月3日_利用Kermack-McKendrick模型描述COVID-19流行病的参数关系》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-03-05
    • 1.时间:2020年3月3日 2.机构或团队:长春理工大学 3.事件概要: 长春理工大学的研究人员在medRxiv预印版平台发表论文“Relations of parameters for describing the epidemic of COVID-19 by the Kermack-McKendrick model”,文章作者基于Kermack-McKendrick模型推导了描述COVID-19流行病的参数之间的有用关系。第一个关系式是1/τgrow=1/τtrans−1/τinf,其中τgrow是流行病指数增长的时间常数,τtrans是病原体从一名患者传播到未感染者的时间,感染时间τinf是是病原体保持其传播能力的时间。第二个关系式p(∞) ≈1−exp(−(R0−1)/0.60)是p(∞)与基本繁殖数R0之间的关系,其中p(∞)为疫情的最终规模,由受感染的总人数与社会人口的比例确定;基本繁殖数R0是指一个感染者在感染期间通过病原体传播而感染的人数传染时间。第三个关系式1/τend=1/τinf−(1−p(∞))/τtrans给出了流行结束阶段的衰减时间常数τend。上述衍生关系被应用于2019年日本的流感,以描述该流行病的特征。 *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用。 4.附件: 原文链接:https://www.medrxiv.org/content/10.1101/2020.02.26.20027797v1
  • 《MedRixv,3月3日,An epidemiological forecast model and software assessing interventions on COVID-19 epidemic in China》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-03-04
    • An epidemiological forecast model and software assessing interventions on COVID-19 epidemic in China Peter X Song, Lili Wang, Yiwang Zhou, Jie He, Bin Zhu, Fei Wang, Lu Tang, Marisa Eisenberg doi: https://doi.org/10.1101/2020.02.29.20029421 Abstract We develop a health informatics toolbox that enables public health workers to timely analyze and evaluate the time-course dynamics of the novel coronavirus (COVID-19) infection using the public available data from the China CDC. This toolbox is built upon a hierarchical epidemiological model in which two observed time series of daily proportions of infected and removed cases are emitted from the underlying infection dynamics governed by a Markov SIR infectious disease process. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.