《中国科学院海洋研究所成功实现微生物代谢过程的原位拉曼可视化定量分析》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2023-03-29
  • 中国科学院海洋研究所张鑫课题组和孙超岷课题组共同合作,基于共聚焦显微拉曼技术,通过三维定量成像实现了长期、近实时、非破坏性的微生物监测,对微生物生长和代谢情况进行可视化及定量分析,为未来分析微生物原位生物过程提供了新思路。研究成果近日发表于国际学术期刊《微生物学谱》(Microbiology Spectrum,IF= 9.043)上。

    张鑫课题组在之前的工作中,观测到我国南海冷泉环境中单质硫含量丰富。随后孙超岷课题组发现了冷泉细菌Erythrobacter flavus 21-3可以高效氧化硫代硫酸钠生成单质硫,张鑫课题组通过拉曼光谱鉴定后发现单质硫结构为环状S8,研究成果发表在生物学领域权威期刊《国际微生物生态学会杂志》(The ISME Journal)。后续两个课题组合作将E. flavus 21-3及其突变株布放到深海冷泉喷口附近进行原位培养,证实该菌株在深海原位环境中也能形成硫单质,相关成果发表在国际生物学期刊《微生物学》(mBio),为解释我国南海冷泉喷口广泛分布硫单质的成因提供了重要理论依据。

    由此可见,微生物是深海硫形成和循环的重要贡献者,其介导的硫代谢的研究对于了解深海硫循环至关重要。然而,由于深海环境极端复杂,采样困难、微生物难于分离培养等因素,以及缺少对硫元素的形成的近实时无损的监测方法,深海微生物的原位探测面临巨大挑战。目前主要通过经典的生物和化学方法研究硫元素的生成过程,例如X射线吸收近边结构、高效液相色谱、透射电子显微镜、离子色谱法或化学计量法等。但是这些方法主要通过取样来获知特定时间点的微生物代谢情况,不能在不破坏样品的前提下连续监测其在时间尺度上的代谢过程;并且其中一些方法样品制备复杂,会破坏细胞的原位真实性;也可能会出现取样不均匀及污染的情况,导致难以实现连续的原位观察。因此,亟需新的方法突破此瓶颈。

    共聚焦显微拉曼三维成像技术拥有低成本、快速、无标签和无破坏性的优势,具有将定性、定量和可视化完美结合的潜力,为我们解决相关问题提供了新的思路。因此,为证明此技术的潜力,研究团队构建了一套固态基底上微生物群落拉曼三维定量原位分析方法,将光学可视化与拉曼定量分析相结合,可在时间和空间两个维度上无损定量表征微生物群落代谢过程。该技术已成功应用到深海冷泉细菌E. flavus 21-3硫代谢过程的原位监测。基于拉曼三维成像进行体积计算和比率分析,对不同环境下的菌落生长和代谢进行了量化,发现了生长和代谢方面不为人知的细节,为厘清深海冷泉生物群落中广泛分布的硫单质成因提供了重要技术支持。据我们所知,这是首次尝试长期监测菌落在固体培养基中生长的原位无损技术。我们能够快速确定代谢产物,推断反应发生的途径,并快速筛选产硫细菌。由于这一成果的应用,不仅证明了该方法在未来对微生物原位过程的可视化及定量分析的潜力,也为研究深海中附着在岩石沉积物等固体表面上的微生物提供了新的思路。

    中国科学院海洋所博士研究生何婉莹、蔡瑞宁为文章共同第一作者,研究员张鑫、孙超岷为文章通讯作者,正高级工程师栾振东、副研究员杜增丰、博士席世川、硕士研究生殷子钰为文章共同作者。研究得到了国家自然科学基金、中国科学院A类战略性先导专项、中国科学院海洋大科学研究中心重点部署项目、泰山青年学者计划等项目联合资助,以及WITec公司吴望华博士和胡海龙博士的支持。   

    相关成果如下:   

    Wanying He; Ruining Cai; Shichuan Xi; Ziyu Yin; Zengfeng Du; Zhendong Luan; Chaomin Sun*, Xin Zhang*. Study of microbial sulfur metabolism in a near real-time pathway through confocal Raman quantitative 3D imaging[J]. Microbiology Spectrum, 2023, IF= 9.043.

    论文DOI: 10.1128/spectrum.03678-22

    Jing Zhang; Rui Liu; Shichuan Xi; Ruining Cai; Xin Zhang, Chaomin Sun*. A novel bacterial thiosulfate oxidation pathway provides a new clue about the formation of zero-valent sulfur in deep sea[J]. The ISME Journal, 2020,14(9):2261-2274.

    论文DOI: 10.1038/s41396-020-0684-5

    Ruining Cai; Wanying He; Rui Liu; Jing Zhang; Xin Zhang, Chaomin Sun*. Deep-sea in situ insights into the formation of zero-valent sulfur driven by a bacterial thiosulfate oxidation pathway[J]. mBio, 2022,13(4):e14322.

    论文DOI: 10.1128/mbio.00143-22

  • 原文来源:http://www.qdio.cas.cn/2019Ver/News/kyjz/202303/t20230321_6705450.html
相关报告
  • 《中国科学院海洋研究所在海洋腐蚀微生物基因组的高灵敏分析及智能预警技术研发获新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2024-06-05
    • 近日,中国科学院海洋研究所在海洋腐蚀微生物基因组的高灵敏检测分析技术研发方面取得新进展,成功研发了基于摩擦纳米产电效应的硫酸盐还原菌基因片段的定量检测及智能预警技术,相关成果发表于国际学术期刊Energy & Environmental Science(IF=32.5)。 硫酸盐还原菌是腐蚀性最强,也是研究最广泛的腐蚀微生物,广泛存在于海洋环境中。腐蚀微生物的功能和行为依赖于其复杂的基因网络,通过研究其胞内功能性表达基因对于操纵微生物腐蚀发生行为表型十分重要。 此研究构建了基于液滴摩擦产电效应的高电压输出器件(DEG)。通过构建聚二甲基硅氧烷掺杂的高熵氧化物材料作为DEG的中间层,利用中间层材料的高熵效应和强大的电荷捕获能力有效减少电荷衰减,从而为增加DEG的电压输出提供了保证,成功实现了420 V的高电压输出和0.23 mA的电流输出。科研人员还研究构建了基于DEG的硫酸盐还原菌基因片段的高灵敏检测分析方法和早期预警系统,为低容量、高灵敏度的腐蚀微生物基因组样品分析需求提供了新的可能。 该研究是海洋环境腐蚀领域中一项新的研究探索,对于腐蚀微生物功能基因信息的定量检测分析,以及从功能遗传学水平探索微生物腐蚀早期预警具有重要的科学价值。 海洋环境腐蚀与生物污损重点实验室博士生周雅楠,副研究员曾艳及硕士生王健明为论文共同第一作者,王鹏研究员为论文通讯作者。研究得到了国家自然科学基金等项目的资助。 文章链接:Yanan Zhou,‡ Yan Zeng,‡ Jianming Wang,‡ Xiaoyi Li,  Peng Wang, * Wenlong Ma, Congyu Wang, Jiawei Li, Wenyong Jiang,and Dun Zhang,Enhancement of the voltage output of droplet electricity generators using high dielectric high-entropy oxide composites,Energy &Environmental Science, 2024, 17, 3580. DOI: 10.1039/d4ee01234h
  • 《中国科学院海洋研究所深海难培养微生物特殊生命过程认知研究取得新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2021-03-29
    •  3月22日,国际生物学期刊The ISME Journal刊发了题为“Characterization of the first cultured free-living representative of Candidatus Izemoplasma uncovers its unique biology”的文章,报道了中国科学院海洋研究所孙超岷课题组关于深海难培养微生物-软壁菌门(Tenericutes)细菌首次纯培养及其特殊生命过程的研究成果,为突破深海难培养微生物的培养瓶颈及深入了解深海稀有微生物类群的环境适应机制提供了重要理论依据和研究范例。 深海蕴含着海量的微生物资源,却是地球上人们了解最少的生境之一。迄今为止,99.9%以上的深海微生物无法获得纯培养,称之为难培养微生物,是地球上尚未实现有效开发的巨大生物资源库。软壁菌门是一类独特的难培养微生物类群,此类菌无细胞壁却由厚壁菌门进化而来。根据宏基因组预测结果可知它们具有突出的核酸降解能力,对磷、氮等元素的循环有重要驱动作用,而且还能自如应对深海高压和陆地常压环境,在进化、耐压和元素循环等方面有独特的研究价值。但是由于软壁菌生长慢、丰度低,迄今国际上还没有获得任何深海生境的纯培养菌株,阻碍了对其进一步深入研究。 基于此,孙超岷研究团队利用在基本培养基中添加大肠杆菌DNA的新颖手段富集并纯培养了一株Izemoplasma纲的软壁菌。因其在进化和代谢特征上兼具软壁菌门和厚壁菌门的特征,研究人员特以《山海经》中一种非鱼非猪的怪物-(xian)父鱼(样子像鲋鱼,有鱼的脑袋,却长着猪的身子)对该菌进行了命名,即Xianfuyuplasma 。进而基于转录组学手段揭示了其代谢有机物和硫代硫酸钠进行能量转换的机制,基于生物化学等手段首次证实了其降解DNA的突出能力,并借助“科学”号科考船的先进装置进行了深海原位实验,验证了该菌在自然生境中也具有降解DNA参与能量合成的独特生命过程。多项前期研究表明深海富含各种类型的核酸分子(如DNA、RNA等),是一些微生物(如软壁菌门)的重要能量来源。而这些类群降解核酸的突出能力有力促进了深海生境磷、碳、氮等生命元素的生物地球化学循环进程,对深海的物质循环和能量代谢具有重要的驱动作用。The ISME Journal主编认为相关研究结果“对其他人从深海沉积物中分离和研究稀有物种有重要启示”(“have important inspiration for others to isolate and study rare species from deep-sea sediments”)。 中国科学院海洋研究所博士研究生郑日宽为第一作者,孙超岷研究员为通讯作者。研究得到国家基金委“水圈微生物驱动地球元素循环的机制”重大研究计划培育项目、大洋协会“深海生物资源计划”及中国科学院海洋大科学研究中心前沿部署等项目联合资助。 相关论文: Rikuan Zheng, Rui Liu, Yeqi Shan, Ruining Cai, Ge Liu, Chaomin Sun*. Characterization of the first cultured free-living representative of Candidatus Izemoplasma uncovers its unique biology. The ISME Journal, 2021, Doi: 10.1038/s41396-021-00961-7. 论文链接:https://rdcu.be/chcze