《科学家发现树根微生物群中的巨大多样性和新型分子》

  • 来源专题:外来生物入侵
  • 编译者: 王成卓
  • 发布时间:2018-11-05
  • 能源部橡树岭国家实验室的研究人员发现,生活在杨树根部及其周围的微生物群落比人类微生物群多10倍,并产生可用作抗生素、抗癌药物、或农业应用的新型分子。该研究标志着对杨树微生物组中基因簇的第一次深入研究,该基因簇编码用于生产独特和多样化的天然产物。

    “我们专注于植物-微生物界面的能量及其信息和材料的交换,”ORNL植物-微生物界面(PMI)科学重点领域的负责人Mitch Doktycz认为天然产品是微生物及其寄主植物的外观和健康性的关键。

相关报告
  • 《科学家发现深海微生物分子如何成为“抗癌武器”》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2022-03-29
    • 加州大学圣迭戈分校斯克里普斯海洋研究所多年的实验室工作揭示了一种海洋细菌如何制造出有效的抗癌分子。抗癌分子salinosporamide A,也被称为Marizomb,正处于III期临床试验中,用于治疗胶质母细胞瘤(一种脑癌)。科学家们首次了解了激活该分子的酶驱动过程。研究发现一种名为SalC的酶形成了该团队称之为salinosporamide抗癌"武器"的关键。相关研究成果已发表在《自然化学生物学》(Nature Chemical Biology)杂志上。 这项工作解决了一个近20年来的谜题,即海洋细菌如何制造salinosporamide分子所特有的性质,并为未来的生物技术打开了制造新型抗癌剂的大门。现在科学家们了解了这种酶是如何制造salinosporamide A的特性的,在未来这一发现可以用来利用酶生产其他类型的salinosporamide,不仅可以攻击癌症,还可以攻击免疫系统疾病和寄生虫引起的感染。 1990年,斯克里普斯海洋研究所研究人员从热带大西洋沉积物中收集到了salinosporamide A和产生该分子的海洋生物。该药物研发过程中的一些临床试验也是在加州大学圣地亚哥分校健康中心的摩尔斯癌症中心进行的。研究中的一个主要问题是要找出有多少种酶负责将分子折叠成其活性形状。是多种酶还是只有一种酶?研究人员最终确定是SalC。salinosporamide分子具有穿越血脑屏障的特殊能力,这是它在胶质母细胞瘤的临床试验中取得进展的原因。该分子有一个小而复杂的环状结构。它起初是一个线性分子,然后折叠成一个更复杂的圆形。大自然制造它的方式非常简单。化学家不能像自然界那样制造这种分子,但大自然用一种酶就能做到。这种酶在生物学中很常见,它参与人体脂肪酸以及微生物中红霉素等抗生素的产生。SalC酶执行的反应与正常的酮合成酶非常不同。正常的酮合成酶是一种帮助分子形成线性链的酶。相比之下,SalC通过形成两种复杂的反应性环状结构来制造salinosporamide。化学家很难在实验室里制造这两种结构。有了这些信息,科学家们现在可以对这种酶进行变异,直到找到有希望抑制各种类型疾病的形式。 研究中所涉及的海洋细菌被称为Salinispora tropica,它制造salinosporamide以避免被其捕食者吃掉。但是科学家们发现,salinosporamide A也可以治疗癌症。他们已经分离出了其他的salinosporamide,但是salinosporamide A具有其他物质所缺乏的特征-包括使其对癌细胞有害的生物活性。如果科学家们能够设计出一种与 salinosporamide 稍有不同的salinosporamide A呢?一种对易患癌症的蛋白酶体的抑制作用较差,但对免疫蛋白酶体的抑制较好的药物?这样salinosporamide可能是一种高度选择性的治疗自身免疫性疾病的方法。获得这种复杂环状结构的酶SalC为将来研究打开了大门。(张灿影  编译)
  • 《研究发现高温深海微生物群落的巨大多样性和相互依存性》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2023-02-04
    • 波特兰州立大学(Portland State University,PSU)和威斯康星大学(University of Wisconsin)的研究人员进行的一项新研究发现深海高温地热环境中,相互依存的群落中生活着丰富多样的微生物。这项研究由PSU生物学教授Reysenbach领导,近期发表在《Microbiome》杂志上。 通过深海热液喷口流出地壳的350-400摄氏度的流体与海水混合,会形成大型多孔岩石,通常被称为“烟囱”或热液矿床。这些烟囱周围的高温环境被大量微生物所占据。几十年来,Reysenbach一直在世界各地的深海热液喷口收集烟囱,并使用基因指纹和培养技术来研究与这些岩石相关的群落的微生物多样性。本研究中,研究团队利用先进的分子生物学技术,对热液群落中微生物的整个基因组进行测序,以了解群落微生物的多样性和生态系统间的相互关系。 该团队构建了40个不同岩石群落的3635种细菌和古菌的基因组。研究人员发现了至少500个新属和两个新门。结果表明:群落多样性的数量惊人,大大扩展了已知的细菌和古菌的种类。 该团队还发现了微生物多样性热点的证据。例如,位于新西兰附近的深海火山的样本中富含不同种类的微生物,其中许多是该火山特有的微生物。这一发现可能表明,与深海热液喷口相比,地下火山岩的复杂性增加,使得它们更有可能容纳不同的微生物物种。 除了在这些高温生态系统中发现了数量惊人的微生物生物多样性外,这项研究的基因组数据还表明,这些生物中的许多都依赖彼此生存。通过对基因组的分析,研究人员发现,一些微生物无法代谢它们生存所需的营养素,因此它们依赖于其他物种产生的营养素,这一过程被称为“代谢切换”。研究人员受此影响,后期将深入了解这些深海微生物之间的相互作用。(李亚清 编译)