《武汉岩土所新型水力联合TBM破岩技术取得进展》

  • 来源专题:岩土力学与工程信息资源网
  • 编译者: linana
  • 发布时间:2024-07-04
  • 随着我国“一带一路”、CZ铁路、长江经济带等国家战略逐步实施,急需建设大量公路铁路隧道、超长水工隧洞、矿山巷道等。TBM(全断面隧道掘进机)以其快速、高效、环保、智能化等独特优势成为长大隧道(隧洞、巷道)建设的最佳选择和必然发展方向。然而,自TBM诞生至今已有百年,机械刀具破岩模式从未改变,导致传统TBM的掘进效率已达到瓶颈,从技术上再无显著提升空间。因此,在不改变传统TBM主体结构框架的基础上,通过把传统刀盘刀具机械破岩与水力、激光等技术组成联合破岩方式,研发新型高效的联合破岩技术,实现我国TBM破岩方式“从0到1”的技术创新,成为解决当前TBM高效快速破岩难题的重大突破点。

    对此,中国科学院武汉岩土力学研究所岩体工程多场耦合效应团队开展了新型水力联合破岩技术研究,取得的主要研究进展包括:研制了高围压水力联合线性破岩试验系统,可开展30 MPa围压条件下的常规类型滚刀、多技术预处理以及水力联合的线性切削破岩试验;揭示了“两侧水刀预先切槽+中间刀/齿滚压破岩”联合破岩机制,揭示了切槽深度控制下的3种破岩形态:欠深度切槽,充分深度切槽以及过深度切槽,确定了切槽深度“可行的”最优区间;开展了不同岩性、刀具类型、槽深、槽间距、贯入度等参数影响的线性切削破岩试验,提出了“切多深、破多深”的最优破岩效果的参数优化匹配技术;开展了不同岩性纯水、磨料的高压水射流切槽试验,获得了高压水射流切槽影响因素及规律,建立了重复切割深度预测模型,并基于此提出了刀盘布局设计方法。

    相关研究成果发表论文7篇,申请发明专利50项(已授权12项,其中1项美国发明专利)、授权实用新型专利20项。

相关报告
  • 《武汉岩土所在断层带泥质充填节理岩体剪切滑移机制方面取得进展》

    • 来源专题:岩土力学与工程信息资源网
    • 编译者:李娜娜
    • 发布时间:2024-12-10
    • 随着浅部煤炭资源日渐减少,我国中东部矿井逐步向千米深部延伸。由于地质历史上长期构造运动的反复剪切挤压作用,深部地层频频出现大范围断层破碎带。以淮南矿区为例,矿区范围内落差大于20米的断层达600余条,每平方千米平均0.4条,其中延伸长度大于1000米的断层占总数的62.5%。同时,随着国家“一带一路”战略的实施,我国正在大规模建设公路、铁路和跨流域调水工程,大量隧道需穿越构造密集发育的深部地层,如:川藏铁路沿线断层密集发育,穿越大量深大活动断裂带(澜沧江断裂带,怒江断裂带、嘉黎断裂带、西兴拉断裂带等)。深部断层破碎带赋存高构造应力,围岩破碎软弱,结构复杂多变且多富含地下水,通常夹杂有大量断层泥,多以岩屑、粉细砂、黏性颗粒等为主,深部断层带围岩高应力与低强度矛盾突出。因此,当隧(巷)道穿越深部断层带时,米级大变形和失稳破坏屡屡出现,造成重大经济损失和安全隐患。 基于此背景,中国科学院武汉岩土力学研究所地下工程科研团队开展了室内试验和渗流力学的相关研究,主要研究成果如下:①开展了流体作用下含断层泥断层诱导滑移的三轴剪切渗流实验,研究了断层泥对断层滑移力学行为以及摩擦稳定性的影响,揭示了泥质充填节理剪切强度及剪切滑移机制;②研究了断层泥岩石粒径对断层滑移速度依赖特性的显著影响。结果表明,断层泥岩石粒径控制着断层滑移事件的发生,并且初始断层滑移所需的流体压力与岩石粒径呈负相关。并深入研究了水力耦合下断层泥诱导断层滑移破裂的微观机制,为深部软岩大变形灾害防控方法的研究提供了新的思路;③研究了断层带充填物含水率对粘土充填岩节理的抗剪强度的影响。研究发现当含水量超过塑性极限时岩石节理的抗剪强度呈负相关趋势,基于JRC-JCS强度准则,提出了富粘土填充岩石节理的剪切强度模型。 研究团队以深部断层破碎带大变形灾害防控为导向,旨在突破深部断层破碎带节理岩体变形分析的理论和技术难题,研究成果为深部断层破碎带围岩大变形防控理论与技术研究提供了理论支撑。相关论文已经发表在《Journal of Rock Mechanics and Geotechnical Engineering》,《International Journal of Rock Mechanics and Mining Sciences》等期刊,获发明专利1项。 论文1链接:https://doi.org/10.1016/j.jrmge.2024.02.022 论文2链接:https://doi.org/10.1016/j.ijrmms.2024.105919
  • 《武汉岩土所岩体宏-细冻胀损伤理论研究取得进展》

    • 来源专题:岩土力学与工程信息资源网
    • 编译者:李娜娜
    • 发布时间:2025-02-18
    • 岩体冻结过程中水/冰相变和水分迁移引起的冻胀力是诱发岩体冻胀开裂的主要原因,特别是在季节性冻融循环期间,冻胀力萌生与消散导致节理、裂隙反复张开和闭合,改变了地质体的物理力学性质,严重影响岩体的强度、完整性和稳定性,长此以往,容易引发由冻胀风化导致的岩倾覆、滑坡、崩塌、落石等灾害。此外,岩体及工程结构的冻胀风化也将严重威胁高寒高海拔地区自然资源的安全开发和工程设施的长期性能保持。现有研究已取得了一些令人满意的结果,但冻胀风化是一个复杂的过程,目前仍然缺乏较为完备的理论,阻碍了对这一过程的深入理解。 为此,中国科学院武汉岩土力学研究所施工过程力学研究团队提出了基于岩体孔隙中水分原位冻结与迁移共同作用的“有效体积膨胀系数”的概念,实现了对现有三种主流冻胀机理(体积膨胀理论、分凝势冻胀理论和混合冻胀理论)的统一解释;在此基础上,建立了考虑冰/岩力学性质、应力水平、冰/水相变、水分迁移和岩石孔隙结构特征的多孔介质冻胀力计算模型,揭示了完整岩石冻融损伤演化机理;并据此进一步建立了考虑宏观裂隙中“冰梁形成→冰楔滑移→裂隙扩展”三阶段演化特征的冻胀力计算模型,揭示了不同破坏形式下(冰梁断裂破坏、冰岩界面破坏、岩石裂隙尖端破坏)冻胀力演化特征,实现了低温相变岩体细观孔隙和宏观裂隙冻胀力求解方法全覆盖,为低温及冻融环境下岩体冻胀损伤劣化特征的定量描述以及寒区隧道冻胀破坏过程的准确表征提供了理论支撑。 研究成果发表于International Journal of Rock Mechanics and Mining Sciences、Cold Regions Science and Technology等期刊,研究工作得到了国家自然科学基金(52279119, 51991392)、西藏自治区科技计划项目(XZ202201ZY0021G)、国家重点基础研究项目(973计划,2010CB05006)等项目资助。 论文链接: https://doi.org/10.1016/j.coldregions.2018.04.016 https://doi.org/10.1016/j.ijrmms.2024.105726