《乙烯多相氢甲酰化及其加氢制正丙醇工业装置成功投产上海光源为明确催化剂的构效关系提供有力证据》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2020-09-18
  • 近日,采用中国科学院大连化学物理研究所丁云杰、严丽团队自主研发的乙烯多相氢甲酰化及其加氢生产正丙醇技术的工业化装置,在宁波巨化新材料有限公司全流程一次开车成功,产品丙醛和正丙醇的质量均达到国际优级品标准。该技术的核心催化剂采用具有原始创新性的多相单原子催化剂,解决了80多年来均相催化多相化一直没有解决的配体和活性金属组分的流失等难题。丁云杰、严丽研究团队与上海光源姜政研究员团队长期合作,从2012年起一直致力于研究氢甲酰化均相催化多相化技术,就Rh单原子催化体系开展了系列研究【1-4】,利用上海光源团队自主研发设计的多套原位装置,开展原位同步辐射X射线谱学SRXS(Synchrotron Radiation X-ray Spectroscopy)研究,结合小波变换方法(WT)辅助SRXS解析,精确探测催化活性中心的局域原子、电子结构,阐明催化机理,明确催化剂的构效关系,解决了复杂体系中的配体结构表征的问题,为明确配体对活性中心电子态的调控提供了有力依据。
    烯烃氢甲酰化反应是将烯烃、氢气和一氧化碳转化为醛类化合物的反应,具有100%原子经济性,在优化利用资源方面具有重要意义。此次乙烯多相氢甲酰化及其加氢生产正丙醇技术的工业化装置中的多相氢甲酰化催化剂,在上海光源的BL14W1线站进行了EXAFS表征。EXAFS谱图中发现有Rh-P键和Rh-C键存在,并没有发现Rh-Rh键,这表明整个催化剂上,Rh物种均匀的单分散在载体上,催化剂上的Rh物种同P原子发生了配位作用,形成Rh-P配合物,并且反应后的催化剂上也只发现有Rh-P键和Rh-C键,并不存在Rh-Rh键,说明催化剂没有发生金属聚集、具有高稳定性,这一结果为其投运可行性提供了有力的理论依据。


    图为Rh在不同样品中的径向结构。1.Rh(CO)2标样 2.HRh(CO)(PPh3)3标样 3.反应前的催化剂样品 4.反应400小时后的催化剂样品
    (* 黑色底图摘自双方合作文章参考文献2,原文中给出了详细拟合参数,此处为了直观,用红色虚线标示出Rh-C键、Rh-P键对应的峰和Rh-Rh键应该出现的位置)
    单原子催化剂(SACs)的概念是由我国科学家于2011年率先提出(Nature Chemistry,2011,3,637-641),利用上海光源XAFS光束线站实验数据证实单原子分散状态。这套单原子催化剂乙烯多相氢甲酰化工业装置的成功运行,不仅为单原子催化剂广泛工业应用提供了范例,也进一步丰富了单原子催化理论。单原子催化理论从提出到实现产业化上海光源都提供了坚实的表征基础。 

     

相关报告
  • 《离子液体催化乙烯-合成气制MMA成套技术研发成功》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-06-14
    • 由中国科学院过程工程研究所离子液体与绿色工程团队研发的“离子液体催化乙烯-合成气制MMA成套技术”通过了由中国石油和化学工业联合会组织的科技成果鉴定。石油化工科学研究院何鸣元院士担任主任委员,中国科学院化学研究所韩布兴院士担任副主任委员,中国石油和化学工业联合会副秘书长胡迁林出席会议并作讲话。    该技术成果采用煤化工下游产品乙烯、合成气、甲醛、甲醇为原料,经四步反应生产MMA(甲基丙烯酸甲酯)。项目组从2008年起,历时十余年,先后攻克了氢甲酰化、羟醛缩合、醛氧化、酯化四步催化剂、分离纯化及工艺集成等科技难题,形成了具有自主知识产权的成套技术。通过离子液体络合金属催化体系创新及新型反应器结构设计,突破了氢甲酰化反应过程催化剂失活和夹带的难题;采用正负离子协同强化原理,实现了温和条件下羟醛缩合反应高转化率和高选择性,解决了高温高压、设备及运行成本高等难题。2010年,与河南能化集团签约,共同推进新技术产业化。河南能化集团选择其下属的河南省中原大化集团有限责任公司进行工业性试验,于2018年建成首套千吨级工业试验装置并成功实现了稳定运行,产品性能优异,验证了技术的可靠性和先进性。    MMA是航空航天、电子信息、光导纤维、光学镜片、机器人等高端材料的基础原料。中国MMA用量全球第一,对外依存度>60%,年需求增长率>10%,属于有机化工进口依存度最高的十大产品之一。世界MMA主要生产技术是丙酮氰醇法,受HCN原料限制,且安全风险大、污染重,面临淘汰。近年来,以石油副产异丁烯为原料生产MMA技术,在我国相继实现产业化示范及应用,为解决我国MMA短缺局面带来了新机会。然而,我国以煤为主的资源禀赋,决定了煤基MMA技术发展的天然优势。乙烯-合成气法制MMA技术的研发成功,开辟了MMA及下游产业发展新路径和新空间,为我国现代煤化工的高端化、差异化、绿色化发展提供了科技支撑。同时,离子液体在该技术中的成功应用,为世界离子液体研究提供了新的应用范例,必将进一步引领推动离子液体绿色技术的产业化进程。
  • 《高效非贵金属乙炔加氢催化剂研究进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-07-09
    • 乙炔选择性加氢反应是石油化工生产过程必不可少的步骤。工业上通过催化加氢的方式去除乙烯原料气中残留的少量乙炔( 0.5%-2% ),以避免接下来聚合反应的催化剂中毒失活。研究表明贵金属钯相较于其他金属在该反应中能够表现出较高的活性和选择性,并且通过引入第二金属组分、表面修饰等调控手段能够进一步提高其乙烯选择性,研制高效钯基乙炔选择性加氢催化剂。但是贵金属钯昂贵的价格极大提升了生产成本,因此廉价非贵金属催化剂的研制一直是催化工业和科学研究的热点。   近年来,非贵金属乙炔选择性加氢催化剂的设计和研制工作取得了重要进展,但是仍然存在很多问题,如制备困难、活性较低、选择性不足等缺点。因此,设计和研制新型、高效非贵金属乙炔选择性加氢催化剂是工业生产和科学研究中的难点和重点。催化剂的设计高度依赖于构效关系的建立,而结构的准确解析是其首要问题。以往对催化剂结构的表征通常基于非原位手段,但是一些敏感型催化剂在空气中会与氧气发生相互作用而导致结构变化,因此通常非原位手段获取的结构与真实催化环境下的活性结构存在差异,给理解催化机制和建立构效关系带来困难。近年来,原位技术的发展使化学环境中催化剂活性结构及其演变的表征成为可能,相关研究结果极大的推动了结构解析及催化机制认知。     金属所沈阳材料科学国家研究中心联合研究部张炳森研究团队一直致力于乙炔选择性加氢催化剂的结构解析、设计及研制工作。通过多种原位手段对乙炔选择性加氢催化剂的活性结构形成及其在反应条件下的演变进行全方位解析,并与反应性能关联,为精准建立乙炔选择性加氢催化剂的“合成条件-活性结构 - 反应性能”关系建立奠定基础,进而为高效加氢催化剂的设计工作提供指导。近日,基于研究团队在乙炔选择性加氢催化剂的相关研究工作( Chem. Commun. 2020, 56, 6372; Angew. Chem. Int. Ed. 2019, 58, 4232; ChemCatChem 2017, 9, 3435 ),金属所张炳森研究员、北京化工大学卫敏教授、吉林大学张伟教授及瑞士苏黎世联邦理工大学黄兴博士和 Marc-Georg Willinger 博士等人合作, 通过引入锌原子对镍的电子结构和八面体间隙体积进行精确调控,捕捉了乙炔在镍基纳米粒子表面自发吸附、解离并进入形成间隙碳化物 Ni 3 ZnC 0.7 结构的完整过程。采用原位 X 射线衍射、原位同步辐射和透射电子显微等研究手段对催化剂结构及其演变进行了表征,发现间隙碳原子通过与六个镍原子的配位,可有效调控镍的原子间距离和电子结构,提高其在乙炔选择性加氢反应中的选择性和稳定性,该工作为高效非贵金属加氢催化剂的设计和制备提供了新思路。相关研究成果近日以 “Manipulating interstitial carbon atoms in the nickel octahedral site for highly efficient hydrogenation of alkyne” 为题发表在《自然 - 通讯》( Nature Communications )期刊上,论文的第一作者为金属所牛一鸣博士。   该项工作得到了国家自然科学基金,辽宁省“兴辽英才计划”项目和中国科学院青年创新促进会项目的支持。