《3D打印具有3D微晶格结构的小型锂离子电池,提高容量和充放电率》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-08-01
  • 当前3D打印用于制造锂离子电池的多孔电极制造仅限于少数几个可能的架构。到目前为止,通过增材制造产生最佳多孔电极的内部几何形状就是所谓的交叉几何形状 —— 金属插片像紧握双手的手指一样,交叉锁住,锂穿梭在两侧之间。而最近,研究人员创建了具有可控孔隙率的3D微晶格结构,可大幅提升锂电池的性能。

    可控孔隙率的微晶格结构

    在微观尺度上,如果它们的电极具有孔隙和通道,则锂离子电池容量可以大大提高。交叉几何形状虽然确实允许锂在充电和放电期间有效地通过电池传输,但并不是最佳的。

    卡内基梅隆大学机械工程副教授Rahul Panat和卡内基梅隆大学的研究人员与密苏里科学技术大学合作,开发了一种革命性的新方法,即3D打印电池电极,可创建具有可控孔隙率的3D微晶格结构。研究人员在发表在增材制造杂志上的一篇论文中展示了这种微晶格结构的3D打印,极大地提高了锂离子电池的容量和充放电率。

    “对于锂离子电池,具有多孔结构的电极可以带来更高的充电容量。”Panat说,“这是因为这种结构允许锂穿透电极体积,从而导致非常高的电极利用率,提高储能容量。在普通电池中,总电极体积的30-50%未被利用。我们的方法克服了这个问题,通过使用3D打印,我们创建了一个微晶格电极架构,可以在整个电极上有效地传输锂,这也提高了电池的充电速率。”

    Panat的论文中介绍的增材制造方法代表了打印3D电池架构复杂几何形状的重大进步,以及几何优化电化学储能3D配置的重要一步。研究人员估计,该技术将在大约2 - 3年内准备好转化为工业应用。

    用作锂离子电池的电极的微晶格结构(Ag)显示出以几种方式改善电池性能,例如与固体块(Ag)电极相比,具体容量增加四倍并且表面容量增加两倍。此外,电极在40个电化学循环后保留其复杂的3D晶格结构,证明了它们的机械强度。因此,电池可以具有相同重量的高容量,或者相同的容量,大大减轻了重量 —— 这是运输应用的重要属性。

    卡内基梅隆大学的研究人员开发了自己的3D打印方法,以创建多孔微晶格架构,同时利用Aerosol Jet 3D打印系统的现有功能。气溶胶喷射系统还允许研究人员在微观层面上打印平面传感器和其他电子设备,该设备于今年早些时候部署在卡内基梅隆大学工程学院。

    到目前为止,3D打印电池的工作仅限于以挤压为基础的打印,其中材料线从喷嘴挤出,形成连续的结构。使用这种方法可以实现交叉结构。通过在Panat实验室开发的方法,研究人员能够通过将各个液滴逐个快速地组装成三维结构来对电池电极进行3D打印。所得到的结构具有使用典型挤压方法不可能制造的复杂几何形状。

    “因为这些液滴彼此分离,我们可以创造出这些新的复杂几何形状。”Panat说,“如果这是一种单一的材料流,就像在挤压印刷的情况下,我们就无法制造它们。这是一个新的东西。我不相信直到现在才有人使用3D打印创造这些复杂的结构。“

    这种革命性的方法对于消费电子、医疗设备行业以及航空航天应用非常重要。该研究将与需要小型化电池的生物医学电子设备很好地集成。非生物电子微器件也将从这项工作中受益。由于使用这种方法打印的电池重量轻、容量大,电子设备、小型无人机和航空航天应用本身也可以使用这种技术。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=234780
相关报告
  • 《英国格拉斯哥大学研究可回收的新型3D打印电池》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2021-04-12
    • 格拉斯哥大学研究人员开发了使用植物淀粉和碳纳米管制成的新型3D打印电池,可为移动设备提供环保、高容量的电源,这将使得锂离子电池能够更有效地存储和输送电能。相关内容发表在《电源》杂志上。   锂离子电池可存储和释放的能量电流设计的物理限制之一是其电极的厚度。较厚的电极会限制锂离子在电极上的扩散,从而限制锂离子电池的比能。电极厚度的增加也会降低其应变容差,使其更易破裂。一旦电极破裂,电池将无法使用。研究人员通过在设计中引入微小的纳米级和微米级细孔,在电极的尺寸和表面积之间取得更好的平衡。他们使用了增材制造技术(3D打印)来严格控制电极中每个孔的大小和位置。在3D打印机中加载他们开发的材料,该材料结合了聚乳酸、磷酸铁锂和碳纳米管。聚乳酸是一种可生物降解的材料,由玉米、甘蔗和甜菜的淀粉加工而成,可提高电池的可回收性。   研究发现, 300微米电极电池具有70%的孔隙率,在测试过程中表现最佳,其比容量为151毫安小时每克,是具有相同厚度的固态电极的传统锂离子电池性能的2到3倍。
  • 《近原子尺寸3D打印》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2021-12-24
    • 近年来,3D打印(或称增材制造),已经成为一种很有前途的新制造工艺,可用于各种各样的部件。德国欧登堡大学的化学家Dmitry Momotenko利用一种新3D打印技术制造出超小的金属物体。他与来自瑞士苏黎世联邦理工学院和新加坡南洋理工大学的一组研究人员在《纳米快报》上发表的相关研究报告称,该技术在微电子学、传感器技术和电池技术方面有潜在的应用前景。该团队已经开发出一种电化学技术,可以用直径仅为25纳米的铜制造物体。作为对比,人类的头发大约是金银丝纳米结构的3000倍厚。 这种新打印技术是建立在相对简单和众所周知的电镀工艺基础上的。在电镀中,带正电的金属离子悬浮在溶液中。当液体与带负电荷的电极接触时,金属离子与电极中的电子结合形成中性金属原子,沉积在电极上,逐渐形成固体金属层。 “在这个过程中,固体金属是从液态盐溶液中制造出来的,电化学家可以非常有效地控制这个过程。”Momotenko说。在这种纳米打印技术中,他在一个微小的吸管中使用了一种带正电的铜离子溶液。液体从移液管的顶端通过打印喷嘴流出。在实验中,喷嘴开口的直径在253到1.6纳米之间。只有两个铜离子可以同时通过这么小的开口。 在3D打印中,科学家面临的最大挑战是,随着金属层的增长,打印喷嘴的开口往往会堵塞。为了防止这种情况的发生,研究小组开发了一种监测印刷过程的技术。他们记录了吸管内带负电荷的衬底电极和正极之间的电流,然后在一个完全自动化的过程中调整喷嘴的移动:喷嘴在极短的时间内接近负极,一旦金属层超过一定厚度,喷嘴就缩回。 利用这种技术,研究人员逐渐将一层又一层的铜层涂到电极表面。由于喷嘴的精确定位,他们能够打印垂直柱和倾斜或螺旋的纳米结构,甚至可以通过简单地改变打印方向来打印水平结构。 他们还能够非常精确地控制结构的直径。首先,通过选择打印喷嘴的大小,其次在实际打印过程中基于电化学参数。研究小组表示,使用这种方法可以打印出的最小物体直径约为25纳米,这相当于195个铜原子排成一排。 这意味着有了新的电化学技术,可以打印出比以前小得多的金属物体。例如,利用金属粉末进行3D打印(一种典型的金属3D打印方法),目前可以达到大约100微米的分辨率。因此,用这种方法可以制造出的最小物体比目前研究中的要大4000倍。 虽然更小的结构也可以用其他技术生产,但潜在材料的选择是有限的。“我们正在研究的技术结合了金属印刷和纳米级精度。”Momotenko解释说,正如3D打印引发了一场生产复杂的大型部件的革命,微型和纳米级的增材制造可以制造功能结构,甚至是超小尺寸的设备。 “3D打印催化剂具有高表面积和特殊的几何形状,允许特定的反应活性,可用于生产复杂的化学品。”Momotenko补充说,三维电极可以提高电能储存的效率。他和团队目前正朝着这个目标努力,通过3D打印大幅增加锂离子电池中电极的表面积,减少负极和负极之间的距离,以加快充电过程。 相关论文信息: https://doi.org/10.1021/acs.nanolett.1c02847