《近原子尺寸3D打印》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2021-12-24
  • 近年来,3D打印(或称增材制造),已经成为一种很有前途的新制造工艺,可用于各种各样的部件。德国欧登堡大学的化学家Dmitry Momotenko利用一种新3D打印技术制造出超小的金属物体。他与来自瑞士苏黎世联邦理工学院和新加坡南洋理工大学的一组研究人员在《纳米快报》上发表的相关研究报告称,该技术在微电子学、传感器技术和电池技术方面有潜在的应用前景。该团队已经开发出一种电化学技术,可以用直径仅为25纳米的铜制造物体。作为对比,人类的头发大约是金银丝纳米结构的3000倍厚。

    这种新打印技术是建立在相对简单和众所周知的电镀工艺基础上的。在电镀中,带正电的金属离子悬浮在溶液中。当液体与带负电荷的电极接触时,金属离子与电极中的电子结合形成中性金属原子,沉积在电极上,逐渐形成固体金属层。

    “在这个过程中,固体金属是从液态盐溶液中制造出来的,电化学家可以非常有效地控制这个过程。”Momotenko说。在这种纳米打印技术中,他在一个微小的吸管中使用了一种带正电的铜离子溶液。液体从移液管的顶端通过打印喷嘴流出。在实验中,喷嘴开口的直径在253到1.6纳米之间。只有两个铜离子可以同时通过这么小的开口。

    在3D打印中,科学家面临的最大挑战是,随着金属层的增长,打印喷嘴的开口往往会堵塞。为了防止这种情况的发生,研究小组开发了一种监测印刷过程的技术。他们记录了吸管内带负电荷的衬底电极和正极之间的电流,然后在一个完全自动化的过程中调整喷嘴的移动:喷嘴在极短的时间内接近负极,一旦金属层超过一定厚度,喷嘴就缩回。

    利用这种技术,研究人员逐渐将一层又一层的铜层涂到电极表面。由于喷嘴的精确定位,他们能够打印垂直柱和倾斜或螺旋的纳米结构,甚至可以通过简单地改变打印方向来打印水平结构。

    他们还能够非常精确地控制结构的直径。首先,通过选择打印喷嘴的大小,其次在实际打印过程中基于电化学参数。研究小组表示,使用这种方法可以打印出的最小物体直径约为25纳米,这相当于195个铜原子排成一排。

    这意味着有了新的电化学技术,可以打印出比以前小得多的金属物体。例如,利用金属粉末进行3D打印(一种典型的金属3D打印方法),目前可以达到大约100微米的分辨率。因此,用这种方法可以制造出的最小物体比目前研究中的要大4000倍。

    虽然更小的结构也可以用其他技术生产,但潜在材料的选择是有限的。“我们正在研究的技术结合了金属印刷和纳米级精度。”Momotenko解释说,正如3D打印引发了一场生产复杂的大型部件的革命,微型和纳米级的增材制造可以制造功能结构,甚至是超小尺寸的设备。

    “3D打印催化剂具有高表面积和特殊的几何形状,允许特定的反应活性,可用于生产复杂的化学品。”Momotenko补充说,三维电极可以提高电能储存的效率。他和团队目前正朝着这个目标努力,通过3D打印大幅增加锂离子电池中电极的表面积,减少负极和负极之间的距离,以加快充电过程。

    相关论文信息:

    https://doi.org/10.1021/acs.nanolett.1c02847

相关报告
  • 《MIM金属3D打印:工业级小型金属3D打印机》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-06-12
    • 金属注射成型(metal Injection Molding,MIM)是一种适于生产小型、三维复杂形状以及具有特殊性能要求制品的近净成形工艺,是将现代塑料注射成形技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成形技术。基本工艺过程是:将各种微细金属粉末(一般小于20μm)按一定的比例与预设粘结剂,制成具有流变特性的喂料,通过注射机注入模具型腔成型出零件毛坯,毛坯件经过脱除粘结剂和高温烧结后,即可得到各种金属零部件。 MIM工艺主要技术特点: 1、适合各种粉末材料的成形,产品应用十分广泛; 2、原材料利用率高,生产自动化程度高,适合连续大批量生产。 3、能直接成形几何形状复杂的小型零件(0.03g~200g); 4、零件尺寸精度高(±0.1%~±0.5%),表面光洁度好(粗糙度1~5μm); 5、产品相对密度高(95~100%),组织均匀,性能优异; 用3D打印的方式,如何实现金属MIM的工艺? 金属MIM 3D FFF打印则是将金属材料与粘结剂预先制成丝材(Filament),通过3D打印机直接打印成型为毛胚,再经过脱脂和烧结就可以等到金属产品。3D打印MIM技术结合了设计的灵活性和精密金属的高强度和整体性,是实现极度复杂几何部件的低成本解决方案,特别适合小批量的金属产品制造。 如果您在从事3D打印领域的工作,就会发现比起任何其他材料类,投资者更注重金属打印处理系统。然而,毋庸置疑的是,在全球材料市场上,聚合物(热塑性塑料和光聚合物)仍占3D打印领域材料销售市场的三分之二以上。与之呈现的问题是,“是什么推动了金属的激增?” 也许金属可能确实是推动工程系统投资的一种材料类别。例如飞机,石油和天然气,航空航天和汽车行业领域;也可能是被金属零件可以作为功能零件而不是用于原型制作的样品这一事实而吸引产生的兴趣。 但是,无论推动金属这一材料的因素是什么,就实际而言,3D打印金属这个过程是非常昂贵的。 3D打印加工所需的金属粉末价格很高,且因为激光加工是一种高能耗的过程,加工废料可占原料的80%,导致了在处理材料时会有健康安全和环境方面的问题。 Apium作为这个行业的领先者,它所研发的P220打印机能够处理工业应用中使用的高性能聚合物,旨在提供熔丝制造(FFF)3D打印技术和高性能聚合物的创新型工业解决方案。而在能够打印金属材料的同时,Apium3D打印机还能够打印PEEK材料及各种其他高性能材料。 熔丝制造(FFF)是替代粉末的一种低成本解决方案。 FFF 3D打印技术的关键优势之一是能够仅消耗制造/构建的零件所需的材料量。此外,用于FFF 3D打印的材料(通常为热塑性聚合物)比用于其他3D打印技术的材料都要便宜。 关键性能及特性 √ 低投入、高品质的金属3D打印解决方案 √ 完整的工艺(3D打印和烧结)解决方案 √ 金属塑料混合线材,金属含量 >80 wt% √ ApiumP220 的Customized 参数系统完美匹配线材 √ 来自于BASF的金属注射成型和材料工艺,相比SLM金属成型更优的技术成本优势 金属3D打印技术的应用领域 √ 高耐腐蚀性和韧性的非磁性金属零件 √ 食品和化学工业零部件 √ 医疗器械、手术工具 √ 轻量化空心件和填充件 √ 模具和模具嵌件表层冷却部分 √ 可小批量生产的零件、工具 Apium作为这个行业的领先者,它所研发的P220打印机能够处理工业应用中使用的高性能聚合物,旨在提供熔丝制造(FFF)3D打印技术和高性能聚合物的创新型工业解决方案。 目前市场上,Apium P220打印机的优势是非常明显的: 1、Apium P/M系列打印机是Made in Germany(Heidelberg), 性价比最优的工业级桌面打印机,不仅能以最优成本小批量3D成型金属件,还可用于金属及其他复合材料的开发。 2、ApiumP220还可高质量打印PEEK、PVDF,CFR-PEEK,POM-C及各种其他高性能材料。
  • 《研究实现3D打印心脏零件》

    • 来源专题:生物科技领域知识集成服务
    • 编译者:陈方
    • 发布时间:2020-04-08
    • 2019年8月2日Sicence报道,美国卡耐基梅隆大学的研究者开发出一种名为“新鲜”(FRESH)的3D生物打印技术,以胶原蛋白为材料,能制造出具有高分辨率的人体器官组织支架。这种史无前例的方法,使组织工程学领域向3D打印全尺寸成人心脏又迈进了一步。 胶原蛋白是人体的主要结构蛋白,具有足够的机械强度为细胞和组织提供结构支撑,是十分理想的生物材料。然而,研究难题是如何让胶原蛋白保持完整的组织形状,同时达到高分辨率和高保真度。对此,研究团队开发了“悬浮水凝胶的自由可逆式嵌入”(Freeform Reversible Embedding of Suspended Hydrogels,FRESH)技术。这种3D打印技术以明胶作为支撑床,特定浓度的胶原蛋白从灵活的打印喷嘴中挤出后,可以在支撑胶中逐层沉积和凝固。打印完成后调整温度使支撑明胶融化,而打印出来的胶原蛋白结构和嵌入胶原蛋白中的细胞保持完好。 研究者用细胞和胶原蛋白成功打印出不同尺寸的心脏零件(从毛细血管到新生儿心脏模型),分辨率最高达20mm,原有技术只能达到100~500mm。然而,研究者也表示,目前要打印符合成人尺寸的人造器官还有诸多挑战,比如大型组织需要数十亿的细胞。