《中国科学家提出利用功能化农药制剂应对植物组合胁迫的新观点》

  • 来源专题:农业生物安全
  • 编译者: 李周晶
  • 发布时间:2024-09-02
  •        2024年8月26日,中国农业科学院植物保护研究所农药分子靶标与绿色农药创制创新团队应邀在Cell Press旗下著名期刊Trends in Plant Science(IF: 17.3)撰写题为《‘Microscopic engineering vehicles’ for plants under stress combination》的观点。考虑到全球气候风险加剧对植物生长带来的不良影响,该论文提出了利用功能化农药制剂同时应对生物及非生物组合胁迫的科学观点,为解决植物受到的组合胁迫危机提供了创新思路。

           气候变化和种植结构调整导致植物遭受不同生物(病、虫、草等)和非生物(干旱、盐、热等)的组合胁迫变得常态化。与单一胁迫下的植物相比,暴露于组合胁迫中的植物在活性氧信号传导、激素调控和气孔反应等方面表现出不同特征。依靠单一农用化学品难以有效应对这些复杂因素引起的植物发育问题,必须针对组合胁迫的复杂性制定更智能、高效和全面的应对策略。

          基于本团队和国内外同行的研究,本文提出了具有缓解胁迫功能的农药制剂用于遭受多种生物及非生物组合胁迫的植物。该观点旨在最大限度地资源化利用农药制剂中的每种物质,由此开发的制剂如同“微型工程车”,不仅可以将农药输送至靶标以应对生物胁迫,还可以修复特定环境和植物部位的非生物胁迫。此类农药制剂的定制化方案应包括开发功能化的载体材料,赋予复合体系提高植物对逆境胁迫耐受性、增强光合作用和促进生长的功能。在制备过程中可通过功能化基团引入、制剂结构及形态优化、助剂辅助等提高复合体系的ROS稳态调控、营养输送、逆境稳定性等方面。此外,巧妙设计的响应释放机制可能有助于有序应对特定组合胁迫中的不同胁迫,以加速胁迫缓解。总之,该研究思路为应对气候变化和种植结构调整导致的组合胁迫危机提供了一种潜在途径,但这一目标的实现仍需要进行长期大量的实验室和田间研究。

  • 原文来源:https://ipp.caas.cn/kyjz/454fb390faa74f07b41c676cb717fccb.htm
相关报告
  • 《中国农科院植保所提出利用功能化农药制剂应对植物组合胁迫的新观点》

    • 来源专题:现代化工
    • 编译者:武春亮
    • 发布时间:2024-08-28
    • 近日,中国农业科学院植物保护研究所农药分子靶标与绿色农药创制创新团队应邀在Cell Press旗下著名期刊Trends in Plant Science(IF: 17.3)撰写题为《‘Microscopic engineering vehicles’ for plants under stress combination》的观点。考虑到全球气候风险加剧对植物生长带来的不良影响,该论文提出了利用功能化农药制剂同时应对生物及非生物组合胁迫的科学观点,为解决植物受到的组合胁迫危机提供了创新思路。 气候变化和种植结构调整导致植物遭受不同生物(病、虫、草等)和非生物(干旱、盐、热等)的组合胁迫变得常态化。与单一胁迫下的植物相比,暴露于组合胁迫中的植物在活性氧信号传导、激素调控和气孔反应等方面表现出不同特征。依靠单一农用化学品难以有效应对这些复杂因素引起的植物发育问题,必须针对组合胁迫的复杂性制定更智能、高效和全面的应对策略。 基于本团队和国内外同行的研究,本文提出了具有缓解胁迫功能的农药制剂用于遭受多种生物及非生物组合胁迫的植物。该观点旨在最大限度地资源化利用农药制剂中的每种物质,由此开发的制剂如同′′微型工程车′′,不仅可以将农药输送至靶标以应对生物胁迫,还可以修复特定环境和植物部位的非生物胁迫。此类农药制剂的定制化方案应包括开发功能化的载体材料,赋予复合体系提高植物对逆境胁迫耐受性、增强光合作用和促进生长的功能。在制备过程中可通过功能化基团引入、制剂结构及形态优化、助剂辅助等提高复合体系的ROS稳态调控、营养输送、逆境稳定性等方面。此外,巧妙设计的响应释放机制可能有助于有序应对特定组合胁迫中的不同胁迫,以加速胁迫缓解。 总之,该研究思路为应对气候变化和种植结构调整导致的组合胁迫危机提供了一种潜在途径,但这一目标的实现仍需要进行长期大量的实验室和田间研究。 原文链接: https://doi.org/10.1016/j.tplants.2024.07.016
  • 《日本科学家实现实现对植物线粒体DNA的编辑》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:xxw
    • 发布时间:2019-07-22
    • 核DNA在20世纪70年代初首次编辑,叶绿体DNA于1988年首次编辑,动物线粒体DNA于2008年编辑。然而,植物线粒体DNA之前却没有被成功编辑过。直到近日,日本的研究人员首次成功编辑了植物线粒体DNA,这可能会带来更安全的食物供应。 领导这项研究的东京大学分子植物遗传学家、助理教授Shin-ichi Arimura开玩笑地说:“当看到水稻植株‘更有礼貌’时,我们知道自己取得了成功。因为它深深地鞠了一躬,穗多的水稻才会出现这样的弯曲。” 研究人员希望利用这项技术来解决目前作物中线粒体遗传多样性缺乏的问题,这是食物供应中潜在的破坏性弱点。他们还利用该技术创造了4个水稻新品种和3个油菜新品种。相关成果发表于《自然—通讯》。 植物线粒体基因组意味着什么? 1970年,一种真菌感染了美国得克萨斯州农场的玉米,之后又因玉米线粒体的一个基因而导致感染加剧。农场上所有玉米都有相同的基因,因此没有一个对这次感染有抵抗力。那一年,整个美国15%的玉米绝收。从那以后,美国再也没有种植具有该特定线粒体基因的玉米。 “我们现在仍然面临很大的风险,因为世界上可利用的植物线粒体基因组太少了。我想通过我们的技术操纵植物线粒体DNA来增加作物的多样性。”Arimura表示。 现在,大多数农民都不会从收获的作物中留种。农业公司供应的杂交作物是两个遗传上不同的亲本亚种的第一代后代,通常更强壮、更有生产力。其中一个父本不能制造花粉。研究人员将常见类型的植物雄性不育称为细胞质雄性不育(CMS)。 CMS是一种罕见但天然存在的现象,主要由线粒体引起。甜菜、胡萝卜、玉米、黑麦、高粱等都可以利用CMS的亲本亚种进行商业化种植。 植物通过叶绿体中的光合作用产生大部分能量。然而,根据Arimura的说法,“叶绿体的作用被高估了”。植物通过和动物细胞一样的“细胞发电站”获得能量,也就是线粒体。在他看来,“没有植物线粒体就没有生命”。 “植物线粒体基因组比较大,结构复杂得多,基因有时是重复的,基因表达机制尚不清楚,有些线粒体完全没有基因组。在之前的研究中,我们观察到它们与其他线粒体融合以交换蛋白质产物,然后再次分离。”Arimura说。 为了找到一种操纵复杂植物线粒体基因组的方法,Arimura和熟悉水稻、油菜CMS系统的科学家进行合作。之前的研究表明,在这两种植物中,造成CMS的原因是水稻和油菜中单一的、进化上不相关的线粒体基因。 研究团队采用了一种称为mitoTALENs的技术,使用单一蛋白质定位线粒体基因组,将DNA切割成所需基因,并将其删除。Arimura 表示,“虽然删除大多数基因会产生问题,但删除CMS基因会解决植物存在的问题。如果没有CMS基因,植物就会再次繁殖。” 他们创造出了4个水稻新品种和3个油菜新品种,证明了mitoTALENs技术甚至可以成功操纵复杂的植物线粒体基因组。 Arimura说:“这是植物线粒体研究重要的第一步。”研究人员将更详细地研究负责植物雄性不育的线粒体基因,并确定可能增加急需多样性的潜在突变。