《中国科学家揭示水稻抗病毒免疫机制新突破》

  • 来源专题:农业生物安全
  • 编译者: 李周晶
  • 发布时间:2025-04-14
  • 病毒侵染一直是威胁水稻生产的重要因素。尽管科学家在过去20多年中在鉴定新病毒、解析病毒致病机理以及植物抗病毒机制等方面取得了重要进展,但对于植物细胞如何感知病毒侵染并启动免疫反应的分子机制仍知之甚少。2025年3月12日,北京大学研究团队联合福建农林大学等多个实验室在国际顶级学术期刊《自然》(Nature)上发表了一项突破性研究,首次系统揭示了水稻细胞感知病毒侵染并启动广谱抗病毒防御反应的分子机制。

    该研究发现水稻RING1-IBR-RING2类型的泛素连接酶RBRL不仅能够识别水稻条纹病毒(Rice

    stripe virus,RSV)的外壳蛋白(CP),还能识别水稻矮缩病毒(Rice dwarf virus,RDV)的外壳蛋白P2。进一步研究表明,RSV CP不仅能诱导RBRL表达量上调,还能激活RBRL的泛素连接酶活性,进而促进RBRL介导的茉莉酸信号通路抑制因子NOVEL INTERACTOR OF JAZ 3(NINJA3)的泛素化和降解,从而激活水稻茉莉酸信号通路。结合团队前期研究成果,在水稻中发现和解析了一条核心的抗病毒通路,即从水稻细胞感知和识别病毒侵染到激活水稻抗病毒免疫机制全链条解析。

    该研究为水稻抗病毒育种提供了多靶点策略:1)利用RBRL广谱识别特性开发广谱抗病毒种质;2)通过精细调控JA信号通路增强基础抗性;3)协同优化RNAi与ROS防御系统。这一系统性成果将为作物抗病毒研究和育种提供新的理论框架和技术路径。

  • 原文来源:Nature |李毅团队揭示水稻细胞感知病毒侵染并启动广谱抗病毒防御反应的分子机制
相关报告
  • 《我国科学家揭示病毒蛋白通过操纵液-液相分离抑制水稻免疫途径新机制》

    • 来源专题:农业生物安全
    • 编译者:李周晶
    • 发布时间:2025-08-20
    • 水稻作为最重要的粮食作物,为超过半数的世界人口提供主食。然而,南方水稻黑条矮缩病毒(southern rice black-streaked dwarf virus, SRBSDV)等病毒严重危害水稻生长,威胁粮食生产安全,解析病毒-水稻互作的分子机制对水稻病毒病的防控具有重要意义。 20025年8月12日,植保所周雪平教授联合浙江大学吴建祥教授团队和华南农业大学张彤教授在Nature Communications上发表了题为“Viral proteins suppress rice defenses by boosting OsTSN1 RNA decay via phase separation and multimerization”的研究论文。该研究发现,水稻病毒编码蛋白通过与寄主因子OsTSN1互作形成病毒蛋白-OsTSN1液滴,并促进OsTSN1的多聚化来增强其核酸酶活性和RNA降解功能,进而协同抑制自噬相关和茉莉酸信号转导相关的水稻抗病毒免疫反应。 该研究证实SRBSDV编码的P6蛋白在植物细胞质具有液-液相分离(Liquid-liquid phase separation, LLPS)的特性,免疫共沉淀串联蛋白质谱分析发现RNA结合蛋白OsTSN1在P6形成的液滴中高度富集,P6通过与OsTSN1互作促进后者发生LLPS,诱导形成定位于应激颗粒(Stress granules, SGs)内的P6-OsTSN1液滴,并且OsTSN1蛋白对P6-OsTSN1液滴的SGs定位起关键作用。遗传学实验结果显示,OsTSN1过表达水稻对SRBSDV的易感性增强,而OsTSN1敲除突变体对SRBSDV的易感性显著降低,表明OsTSN1负调控水稻的抗病毒免疫反应。进一步研究发现,OsTSN1能降解单链RNA,且其核酸酶活性与其多聚化程度呈正相关,而在P6-OsTSN1液滴中P6通过与OsTSN1相互作用促进其多聚化,从而显著增强OsTSN1的核酸酶活性。紫外交联免疫沉淀结合RNA-seq分析发现,OsTSN1特异性识别并结合含有GAGGAG基序的mRNA,其中OsNAC15和OsLHY转录因子的mRNA被P6-OsTSN1液滴显著富集并靶向降解。进一步研究证实,OsNAC15作为转录激活因子结合自噬相关基因OsATG8C的启动子区域并正调控其转录表达,而OsLHY作为转录抑制因子结合茉莉酸信号通路相关基因OsJAZ6/12的启动子区域并负调控其转录表达。此外,SRBSDV P6通过形成P6-OsTSN1液滴来特异性招募并降解OsNAC15和OsLHY的mRNA,抑制自噬相关基因OsATG8C的转录但增强茉莉酸信号通路相关基因OsJAZ6/12的转录,从而同时抑制水稻自噬和茉莉酸信号通路介导的抗病毒免疫反应。 水稻黑条矮缩病毒(rice black-streaked dwarf virus, RBSDV)和水稻条纹病毒(rice stripe virus, RSV)编码的P6和NS3蛋白均含有内在无序去(IDRs)并具有LLPS的特性,也能与OsTSN1互作并共同形成定位于SGs内的RBSDV P6-OsTSN1液滴和RSV NS3-OsTSN1液滴。在液滴内RBSDV P6和RSV NS3均可通过促进OsTSN1的多聚化来增强后者的核酸酶活性和RNA降解功能。此外,OsTSN1过表达水稻对RBSDV和RSV的易感性增强,而OsTSN1敲除突变体对RBSDV和RSV的易感性显著下降,表明OsTSN1也负调控水稻抗RBSDV和RSV的免疫反应。 总之,水稻病毒的RNA沉默抑制因子(SRBSDV P6、RBSDV P6和RSV NS3)均发生LLPS,并与寄主因子OsTSN1互作形成定位于SGs内的病毒蛋白-OsTSN1液滴。在液滴中,病毒蛋白通过促进OsTSN1的多聚化来增强其核酸酶活性,从而降解编码转录因子OsLHY和OsNAC15的转录本,抑制下游自噬和茉莉酸相关的水稻免疫途径进而促进病毒感染水稻,表明不同水稻病毒在入侵水稻策略上存在趋同现象。研究结果为水稻病毒病的抗病育种提供新的理论依据。
  • 《新研究揭示CRISPR系统的抗病毒工作机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2019-03-14
    • 一个世纪以来,科学家已经知道病毒会攻击并有时会杀死细菌,就像人类感染流感一样。但直到最近,他们才开始了解随着细菌和病毒争取竞争优势而发生的生物化学,对医学产生深远的影响等等。 蒙大拿州立大学文学与科学学院和农业学院微生物学和免疫学系副教授Blake Wiedenheft表示,十年前,没有人认为细菌具有复杂的适应性免疫系统。然而,从那以后,研究人员发现了一种细菌利用机器分子检测和摧毁入侵病毒的机制。这种免疫反应被称为CRISPR,这是一个缩写,描述了细菌如何将病毒DNA片段整合到自己的基因组中,作为未来识别和对抗病毒的一种方式。 对于Wiedenheft而言,不断增长的CRISPR知识引发了其他问题:病毒是否找到了破坏细菌防御的方法,内在的分子机制如何? Wiedenheft在3月11日发表于Molecular Cell期刊的一篇科学论文中发表了他的团队最新发现,不仅描述了CRISPR防御的新细节,而且还发现了扩大科学家对资源丰富病毒的理解的发现。 使用强大的电子显微镜和尖端的图像处理技术,Wiedenheft和他的合作者,斯克里普斯研究所的副教授Gabriel Lander,可以看到一个复杂的CRISPR分子通过展开类似于“灯塔”的分子臂来响应病毒DNA。Wiedenheft解释说,灯塔就像“发出危险信号的红色闪光灯”,作为其他CRISPR分子的生物化学线索来摧毁病毒。 Wiedenheft指出,这一发现表明,病毒可能通过借用(CRISPR)免疫系统本身并重新部署它们来抵抗免疫反应。