《纳米级的光操纵带来令人兴奋的新进展》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2019-10-14
  • 控制光与物质之间的相互作用一直是寻求开发和进步众多对社会至关重要的技术的科学家的长期抱负。近年来,随着纳米技术的蓬勃发展,光的纳米级操纵已成为既是继续发展的有希望的途径,又是独特的挑战,因为当结构的尺寸变得与光的波长可比时,就会出现新的行为。

    新墨西哥大学物理与天文学系理论纳米光子学小组的科学家为此做出了令人振奋的新进展,该研究的开创性工作名为《分析纳米粒子阵列产生的近场极限》。最近发表在ACS Nano杂志上,这是纳米技术领域的顶级期刊。

    由助理教授亚历杭德罗·曼加卡斯(Alejandro Manjavacas)领导的小组研究了如何控制金属纳米结构的周期性阵列的光学响应,以在其附近产生强电场。

    他们研究的阵列是由银纳米颗粒组成的,这些银纳米颗粒比人类头发的厚度小数百倍,并以重复的方式放置,尽管它们的结果也适用于其他材料制成的纳米结构。由于每个纳米球之间的强相互作用,这些系统可用于不同的应用程序,从生动,高分辨率的彩色打印到可以彻底改变医疗保健的生物传感。

    Manjavacas说:“这项新工作将提供有关其行为的基本见解,从而有助于推进纳米结构阵列的许多应用。” “我们预测,近场增强功能可能会改变超灵敏生物传感等技术的游戏规则。”

    由物理和天文学系的研究生Lauren Zundel和Stephen Sanders组成的Manjavacas及其团队对这些阵列的光学响应进行了建模,发现了令人兴奋的新结果。当用光照射纳米结构的周期性阵列时,每个粒子都会产生强烈的响应,如果所有粒子都可以相互作用,则反过来会导致巨大的集体行为。这在入射光的某些波长处发生,该波长由阵列的粒子间间距确定,并且可以导致电场,该电场是照射在阵列上的光的电场的数千倍,甚至数万倍。

    这种场增强的强度取决于阵列的几何特性,例如纳米球之间的间距以及球本身的大小。完全违反直觉,Manjavacas及其小组发现,通过增加每个纳米粒子之间的间距或减小它们的尺寸来降低阵列中纳米粒子的密度,不仅会产生更大的电场增强,而且会扩展到距离阵列更远的地方。 。

    “发现这些巨大的场增强的关键实际上在于使粒子更小,更远,这真是令人兴奋,”发现的Zundel说。

    桑德斯说:“这样做的原因是,纳米颗粒之间的相互作用增强了,因此集体反应得到了增强。”

    该研究部分由美国国家科学基金会(NSF)赞助,并利用了UNM高级研究计算中心提供的高性能计算资源。

    ——文章发布于2019年10月11日

相关报告
  • 《国家纳米科学中心在二维材料范德华界面力学研究取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:万勇
    • 发布时间:2021-11-26
    • 近日,国家纳米科学中心张忠研究员、刘璐琪研究员团队在范德华界面力学行为研究方面取得重要进展。相关研究成果以“Elastocapillary cleaning of twisted bilayer graphene interfaces”在线发表于Nature Communications (12, 5069, 2021. https://doi.org/10.1038/s41467-021-25302-2)。 以石墨烯为代表的二维材料具有优异的力、电、光、热等物性。通过逐层堆垛组装构筑的范德华同质/异质结体系可进一步拓展其性能,如特定角度堆叠的双层转角石墨烯表现出超导、超滑等物理力学行为。由于二维材料的大比表面积特性,在构筑范德华同质/异质结过程中,不可避免地夹杂空气中水分子等杂质并聚集形成微纳米尺度鼓泡。一方面受到污染的范德华界面预期会显著降低微纳米器件的性能。另一方面,这种微纳米尺度鼓泡具有高压、限域、大变形等特征,为二维材料应变工程、高压化学、限域催化、电镜下液体池等多领域提供了新的研究契机。因此,如何克服鼓泡污染实现范德华界面原子级洁净、鼓泡应变大小及分布、压差等因素是二维材料制备、转移、物性测量及应用中不可回避的关键问题。 针对同质/异质范德华材料界面力学行为难于测量与表征这一难题。研究团队提出角度可控范德华同质/异质结构筑新策略,实现了转角双层石墨烯制备(ACS Appl. Mater. & Interfaces, 2020; 12(36): 40958-67)。该工作中,研究团队借助侧向力显微镜技术表征转角石墨烯莫尔云纹,实现了对范德华界面洁净度的可视化表征。借助毛细力辅助转移技术引入水、乙醇等介质构筑了纳米级液泡。在弹性能和界面能竞争机制下纳米液泡呈现几何自相似性,具有特定弹性毛细参数。在探针力的激励下石墨烯范德华界面表现出自清洁现象;得益于液泡的边缘失稳,相邻液泡间发生“长程”作用诱导纳米液泡发生自发融合。研究揭示了不同于传统奥斯特瓦尔德熟化机制下二维材料弹性能对融合过程的影响和贡献。通过理论分析结合微孔鼓泡实验技术,进一步研究了预张力对弹性毛细参数和液泡间“长程”相互作用影响及调控,相关机制得到分子动力学模拟支持和验证。 张忠研究员课题组长期致力于低维微纳米材料及结构力学行为研究,在该领域有着深厚的研究经验积累。通过自主搭建的微纳米尺度鼓泡技术-原子力显微术-显微拉曼光谱联用测试表征技术平台,近5年先后实现了双层石墨烯层间范德华界面可控剪切变形与界面剪切应力测量(Phys. Rev. Lett. 2017);揭示界面强弱差异对微纳米尺度鼓泡应变分布及大小的影响,提出预测纳米尺度不同形状鼓泡应变大小和分布的理论解(Phys. Rev. Lett. 2018,封面);实现了纳米级厚度二维材料弯曲刚度实验测量。由于层间范德华界面剪切变形和滑移影响,材料本征力学参数弯曲刚度和杨氏模量表现为独立力学参量,传统薄板理论中弯曲刚度与厚度关系不再适用(Phys. Rev. Lett. 2019, 封面);并对以上研究成果在应变工程、纳米复合材料等领域的影响进行了评述,揭示微纳米尺度界面力学在多学科领域研究中的重要影响(Adv. Mater. 2019, Compos. A 2021)。 中国科学技术大学在国家纳米中心联合培养侯渊博士、美国德州大学奥斯丁分校戴兆贺博士、清华大学张帅博士为论文共同第一作者,分子动力学模拟由清华大学冯诗喆博士完成。国家纳米科学中心刘璐琪研究员、张忠研究员,清华大学李群仰教授、徐志平教授为该工作的通讯作者。该系列工作先后得到了国家自然科学基金委项目重大和重点项目、中国科学院战略性先导科技专项B类、科技部重大科学研究计划等项目的共同资助。 原文链接:https://www.nature.com/articles/s41467-021-25302-2。
  • 《突破 | 亚纳米级光学技术获得重要突破》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-07-24
    • 想象一下,将光缩小到一个微小的水分子大小,打开一个量子可能性的世界。这是光科学和技术领域长久以来的梦想。最近的进展使我们离实现这一令人难以置信的壮举更近了一步,因为浙江大学的研究人员在将光限制在亚纳米尺度上取得了突破性进展。 传统上,有两种方法来局部化超出其典型衍射极限的光:介电约束和等离子体约束。然而,诸如精密制造和光损耗等挑战阻碍了将光场限制在亚10纳米(nm)甚至1纳米水平。但是现在,《先进光子学》杂志报道了一种新的波导方案,有望释放亚纳米光场的潜力。 想象一下:光从一根普通的光纤出发,通过一根光纤锥开始一段变革性的旅程,最终到达一个耦合纳米线对(CNP)。在CNP中,光变形成一个非凡的纳米狭缝模式,产生一个受限的光场,可以小到仅仅是纳米的几分之一(大约0.3纳米)。这种新颖的方法具有高达95%的惊人效率和很高的峰值与背景比,提供了一个全新的可能性世界。 新的波导方案将其范围扩展到中红外光谱范围,进一步推动了纳米宇宙的边界。光学约束现在可以达到大约0.2nm (λ/20000)的惊人规模,为探索和发现提供了更多的机会。 浙江大学纳米光子学组的童利民教授指出:“与以前的方法不同,波导方案以线性光学系统的形式呈现,带来了许多优点。它可以实现宽带和超快脉冲操作,并允许多个亚纳米光场的组合。在单一输出中设计空间,光谱和时间序列的能力开辟了无限的可能性。” 这些突破的潜在应用是令人敬畏的。光场定位到可以与单个分子或原子相互作用,有望在光-物质相互作用、超分辨率纳米显微镜、原子/分子操作和超灵敏检测方面取得进展。我们站在一个新发现时代的悬崖上,在那里,最小的存在领域都在我们的掌握之中。 光被极大地限制在耦合的纳米线对中的纳米狭缝中 在纳米狭缝模式下产生亚纳米受限光场的波导方案。(a) CNP波导方案示意图。(b)纳米狭缝模式横截面场强分布图