《固体所在光电晶体管的光调控方面取得进展 》

  • 来源专题:中国科学院亮点监测
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2019-01-10
  • 近期,固体所纳米材料与纳米结构研究室费广涛研究员课题组与中国科学技术大学合肥微尺度物质科学国家研究中心张尧博士合作,在光电晶体管的光调控方面取得进展。研究发现,Ag/TiO2复合薄膜在外加两束光照射后,具有类似于三极管的特性,可以实现对光电信号的增强、开关和调制,该器件被称为全光输入的晶体管。相关结果作为卷首图片(Frontispiece)文章发表在Advanced Functional Materials (Adv. Funct. Mater. 28(40), 1870290 (2018))上。

      银/二氧化钛(Ag/TiO2)多孔膜由于其表面等离共振及热电子的快速转移特性,被认为是热电子光探测器的理想材料,而增强其光响应度一直是科研人员研究的目标。课题组助理研究员高旭东博士等在研究Ag/TiO2多孔膜对近红外光的响应性能时偶然发现,在近红外光照射的基础上再增加一束紫外光照射,该复合薄膜对近红外光探测的响应度会有近100倍的增加(图1)。

      这表明,Ag/TiO2复合薄膜在外加两束光照射后,具有类似于三极管的特性。众所周知,三极管是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管有三个电极,分别是基极、发射极和集电极。通常情况下,在三极管中,电信号从基极输入,从集电极输出,它的输出特性曲线如图2a所示。研究发现,当近红外光作为源极信号光输入,复合薄膜将这种近红外光转换成电信号输出,在此基础上,再外加紫外光照射到复合薄膜上,可以调控输出的电信号,输出特性曲线如图2b。比较图2b与图2a可见,Ag/TiO2复合薄膜的输出特性曲线与三极管的输出特性曲线非常相似,因此,将这种Ag/TiO2复合薄膜称作全光输入的晶体管。值得一提的是,这种光电器件只需要两束光输入,不需要外加电驱动。

      分析表明,这种光控光电流增强特性源于器件的Ag与TiO2之间的肖特基势垒。多孔TiO2在一般情况下,表面有大量的化学吸附氧,表面能带向上弯曲,在与Ag接触后,便形成高势垒肖特基结(图3a)。近红外光照射到Ag薄膜上时,会激发表面等离激元,进而产生热电子。部分热电子会越过Ag与TiO2之间的肖特基势垒,进入TiO2一侧,进而产生光电流。由于肖特基势垒较高,越过势垒的热电子数量较少。而当紫外光照射到Ag/TiO2复合薄膜上时,TiO2内部产生的光生空穴可以从表面吸附的氧上夺取电子(去氧吸附),导致表面能带下降,进而使肖特基势垒下降。也就是说,通过紫外光照射可实现肖特基势垒高度的调节。随着肖特基势垒的降低,越过势垒进入TiO2一侧的热电子会大幅度增加,导致光电流有数量级的增加(图3b)。由此,通过控制紫外光的光强来调节肖特基势垒高度,可实现对输出热电子光电流的可控调节,即实现了光电流输出的有效放大。

      类比于三极管对电信号的放大、开关和调制等功能,这种Ag/TiO2复合薄膜全光输入的晶体管可用于对光电信号的增强、开关和调制(图4)。该项工作为未来光电器件的研制提供了重要参考。

      本工作得到国家重点研发计划、国家自然科学基金的资助。

相关报告
  • 《氮化镓晶体管的单片光电集成》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2019-12-22
    • 根据《IEEE电子器件快报》,南京邮电大学首次将发光二极管(LED)和增强型金属氧化物半导体场效应晶体管(MOSFET)集成到硅基氮化镓(GaN)外延晶片上。该研究小组还展示了MOSFET在同一平台上控制氮化铟镓(InGaN)LED的能力。研究人员希望这种单片式光学电子集成电路(OEIC)可以实现智能照明、显示器和可见光通信(VLC)之类的应用。 硅衬底III型氮化物结构包括一个250nm InGaN / GaN多量子阱(MQW)层,该层夹在n型和p型GaN之间,用于发光二极管中,晶片的直径为2英寸,厚300μm。使用n-GaN作为源极和漏极形成晶体管,而沟道穿过未掺杂的GaN层。绝缘层和栅极电介质由100nm二氧化硅(SIO2)组成。通道长度为20μm,凹环中心的半径为135μm。蚀刻去除p-GaN和InGaN / GaN层。使用PECVD施加SiO2并通过反应离子蚀刻进行图案化。 在1V漏极偏置下,亚阈值行为非常差,研究人员希望通过四甲基氢氧化铵(TMAH)或氟处理来改善亚阈值行为,以减少凹槽侧壁的表面粗糙度。相比之下,阈值电压为6.01V,峰值跨导为3.78μS/ mm,导通电阻为7.96Ω-m,漏极偏压为0.1V。栅极和漏极泄漏电流分别为120nA / mm(0V漏极,12V栅极)和5μA/ mm(5V漏极,0V栅极)。 在直流测试中,在12V栅极电势下的最小导通电阻为5Ω-m。该团队评论说:“尽管与一些已发布的基于GaN的FET相比,其输出电流相对较低,但MOSFET仍可以满足众多低功耗应用的要求,尤其是用于电流从几微安到几百微安的微型LED。”
  • 《化学所在RNA表观遗传修饰的化学调控研究方面取得进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-03-30
    • RNA的表观遗传修饰是RNA调节基因表达的化学基础,利用新反应技术和新分子工具对RNA修饰进行精准调控对揭示RNA介导的遗传信息表达网络具有重要意义。然而由于RNA本身的不稳定性,使得在活细胞水平进行化学调控变得异常艰难。N6-甲基腺嘌呤(m6A)是真核生物最常见和最丰富的一种修饰,占甲基化修饰的80%以上。m6A修饰广泛参与调控mRNA的剪接、运输、稳定性和翻译效率等,并且与肥胖和肿瘤等多种生理功能异常及疾病相关。发展能够直接与m6A修饰进行相互作用的小分子化合物,以此实现在细胞水平上特异性识别m6A修饰并且进行选择性调控,更加精确地描绘RNA的修饰动态过程及其效应,具有十分重要的生物学意义和应用价值。   在国家自然科学基金委、科技部和中国科学院的支持下,中国科学院化学研究所分子识别与功能重点实验室研究员程靓团队长期从事该领域的基础研究,发展了一系列针对重要RNA表观遗传修饰的高选择、高灵敏、时空分辨的化学转化、荧光标记的原理和方法。他们前期报道了首例在蓝光照射下,维生素B2选择性促进核苷水平的m6A去甲基化研究(Chem. Commun. 2017, 53, 10734),为后续在细胞水平调控m6A奠定了基础。最近,他们和活体分析化学重点实验室研究员汪铭课题组合作,首次实现了化学小分子对RNA表观遗传修饰的直接干预。研究表明,核黄素单核苷酸(FMN)作为人工去甲基化酶,能够利用细胞中的氧气实现核苷、寡核苷酸以及活体细胞水平上的m6A去甲基化。FMN的作用方式是特异性地氧化N6-甲基取代的腺苷,而不是传统的作为甲基化酶的抑制剂或去甲基化酶的激动剂。即使在甲基化酶过表达的细胞中,FMN依然可以有效地下调m6A的表达水平,表明FMN有望作为新型的靶向m6A修饰的小分子抑制剂进行开发,对治疗由m6A过表达引起的生理疾病以及深入研究m6A的生物学功能提供了候选化合物。相关成果发表于《德国应用化学》