《研究人员揭示了日本河流中塑料垃圾清除率背后的关键因素》

  • 来源专题:水与大气环境治理
  • 编译者: 胡晓语
  • 发布时间:2024-12-16
  • 由东京理科大学助理教授田中森领导的研究小组决定对日本河流中塑料垃圾的清除情况进行首次全国范围的分析。

    在2024年11月1日发表的《海洋污染公报》上,该团队使用土地、基础设施、交通和旅游部提供的数据集,量化了每年从河岸和水面回收的塑料废物。通过更仔细地研究数据,研究人员注意到,自然灾害和极端天气事件与从河流中收集的塑料垃圾的价值飙升密切相关AI为你提供母语级高精翻译免

  • 原文来源:https://smartwatermagazine.com/news/tokyo-university-science/researchers-reveal-key-factors-behind-japans-plastic-waste-removal
相关报告
  • 《研究揭示热带大型河流有机碳埋藏关键机制》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:熊萍
    • 发布时间:2025-09-21
    • 近日,中国科学院南海海洋研究所边缘海与大洋地质实验室刘建国研究员团队在热带大型河流系统有机碳(OC)储存与稳定性调控机制研究方面取得重要进展。该研究系统揭示了风化过程及矿物组成(尤其是铁氧化物和铝质黏土)对有机碳动态的关键控制作用,相关发表于国际知名地学期刊《CATENA》。该研究成果共同第一作者为国际博士后Md Hafijur Rahaman Khan(中文名:苏曼)与中国海洋大学博士谭龙,南海海洋所研究员刘建国、副研究员黄云为共同通讯作者。其他作者包括南海海洋所博士Ananna Rahman、自然资源部第一海洋研究所研究员刘升发、南海海洋所研究员陈忠。 河流与海洋沉积物中的有机碳埋藏是全球碳循环的核心环节之一,对调节地球气候平衡具有深远影响。尽管热带河流流域面积仅占全球陆地有限部分,但其输送的沉积物和有机质总量却占全球重要比例,其中有机碳的埋藏效率与稳定性一直是学界关注的焦点。然而在高温高湿、化学风化强烈的热带地区,有机碳在搬运与沉积过程中保存与分解的具体矿物学机制尚不明确。 研究团队以恒河–布拉马普特拉河(G–B)这一全球规模最大、输沙量最丰富的热带河流系统为研究对象,通过对流域沉积物开展系统的地球化学与矿物学分析,研究发现:化学风化促进了铝质黏土(如高岭石)的形成,这些矿物通过吸附和微环境保护机制,有效稳定有机碳;铁氧化物能够与有机碳形成强烈的有机–矿物结合及表面涂层,减少微生物降解,从而提高有机质的长期保存率;相比之下,在潮湿的热带环境中,部分高反应性矿物相可能会加速有机碳在搬运和沉积过程中的分解与流失。 研究表明,风化产物与有机质之间的相互作用是决定热带河流系统中有机碳埋藏效率的关键因素。该成果不仅深化了人们对源–汇过程和有机碳–矿物相互作用机制的理解,还为预测热带河流在未来气候变化中的响应及其对全球碳循环的反馈提供了重要科学依据。 研究工作得到了国家自然科学基金和中国科学院-TWAS院长奖学金计划共同资助。 文章信息:Khan MHR1,Tan L1,Liu J.*,Rahman A,Huang Y*,Liu S,Chen Z,2025. The impact of weathering,iron oxides,and aluminous clays on organic carbon storage and stability in an extensive tropical river system. CATENA 258,109250. 文章链接: https://doi.org/10.1016/j.catena.2025.109250
  • 《研究揭示海洋上方空气中微塑料的扩散》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2020-12-31
    • 以色列魏茨曼科学研究所的一项研究揭示微塑料(微塑料被定义为直径小于5毫米的颗粒)正成为一个严重的生态问题。微塑料被卷进大气,随风飘散到海洋中遥远的地方。这种微小碎片可以在空气中停留数小时或数天,影响海洋环境并通过食物链影响人类健康。 该研究所地球与行星科学系的Ilan Koren教授和植物与环境科学系的Assaf Vardi教授的小组成员Miri Trainic博士指出,一些研究已经显示在海岸线附近水面上方的大气中发现了微塑料,但是他们惊讶地发现,在看似纯净的水面之上,有无数的微塑料。 该研究所地球与行星科学系Koren、Vardi和Yinon Rudich教授已经开展了多年的研究以理解海洋与空气之间的界面。虽然海洋从大气中吸收物质的方式已经得到了很好的研究,但相反的过程——气溶胶化,即挥发物、病毒、海藻碎片和其他颗粒从海水扩散到大气中的研究却很少。 作为这项研究的一部分,科学家们在2016年"塔拉"号研究船运行期间,收集了气溶胶样品。Weizmann团队将他们的测量设备的入口贴在"塔拉"号的一根桅杆顶部(以避免任何由帆船本身产生的气溶胶)。 识别和量化气溶胶样本中的微塑料碎片远非易事,因为在显微镜下很难发现这些微粒。为了确切了解进入大气的塑料是什么,该团队在化学研究支持机构Iddo Pinkas博士的协助下进行了拉曼光谱测量,以确定塑料的化学组成和大小。研究人员在他们的样本中检测到高水平的普通塑料——聚苯乙烯、聚乙烯、聚丙烯等等。然后,通过计算微塑料颗粒的形状和质量,以及海洋上的平均风向和风速,该团队发现,这些微塑料的来源很可能是丢弃在海岸附近、进入数百公里外海洋的塑料袋和其他塑料垃圾。 在取样点下方的海水中发现了与气溶胶中相同类型的塑料,这支持了一种观点,即微型塑料通过海洋表面的气泡进入大气,或者被风吹起,然后通过气流输送到海洋的偏远地区。一旦微塑料进入大气,它们就会变干,暴露在紫外线和与之发生化学反应的大气成分中。这意味着,对任何吞食它们的海洋生物来说,落回海洋的颗粒物可能比以前更有害或有毒。最重要的是,一些塑料成为各种海洋细菌滋生的场所,所以空气中的塑料可能会为一些物种提供便利,包括对海洋生物和人类有害的致病菌。 Trainic指出,海洋气溶胶中微塑料的实际数量几乎肯定比他们的测量结果要大,因为他们的装置无法检测到那些小于几微米的颗粒。例如,除了可以分解成更小碎片的塑料外,还有添加到化妆品中的纳米颗粒,它们很容易被冲进海洋,或者是通过微塑料碎片在海洋中形成的。 塑料颗粒的大小很重要,不仅因为较轻的颗粒可能会在空气中停留更长的时间。而且当它们落入水面时,更有可能被同样小的海洋生物吃掉,当然,海洋生物不能消化它们。因此,这些粒子都有可能伤害海洋生物,或者通过食物链进入我们的身体。 (刁何煜  编译)